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ON THE (p, q)− FIBONACCI N−DIMENSIONAL
RECURRENCES

Orhan Dişkaya and Hamza Menken

Abstract. In this study, one-dimensional, two-dimensional, three-dimensional
and n−dimensional recurrences of the (p, q)−Fibonacci sequence are examined

and their some identities are given.

1. Introduction

A rabbit problem is included in the book “Liber Abaci” written by Fibonacci
in 1202. An interesting number pattern was encountered in the solution of this
problem. This number sequence is the most important number sequence discovered,
namely the Fibonacci number sequence. The Fibonacci sequence Fn is defined by
the recurrence

Fn+2 = Fn+1 + Fn, n > 0

with the initial values F0 = 0 and F1 = 1. For the recent process of Fibonacci and
Fibonacci-like sequences, we refer the reader to [2, 6, 7, 8, 9, 10, 12]. In these stud-
ies, interesting properties of this number sequence were noticed. The Lucas, Pell,
Pell-Lucas, Jacobsthal, Jacobsthal-Lucas, Tribonacci, Padovan, and Perrin num-
ber sequences are some other number sequences defined similarly to the Fibonacci
number sequence. In addition, the Fibonacci sequence has been generalized until
today and has been associated with other mathematical structures and interesting
results have been obtained. One of the generalizations of Fibonacci sequence is
the (p, q)−Fibonacci sequence. For n ∈ N and p2 + 4q > 0, the (p, q)−Fibonacci
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sequence Fn(p, q) is defined by the recurrence

Fn+2(p, q) = pFn+1(p, q) + qFn(p, q)

with the initial values F0(p, q) = 0 and F1(p, q) = 1 [11].
In this study, some components of the (p, q)−Fibonacci sequence are mentioned.
These components are given below.

2. Two-dimensional recurrences of the (p, q)−Fibonacci sequence

In this section, we first introduce the two-dimensional recurrences of the
(p, q)−Fibonacci sequence based on the one-dimensional recurrence.

Definition 2.1. For n,m ∈ N and p2 + 4q > 0, the two-dimensional of
(p, q)−Fibonacci sequence Fn,m

p,q is defined by the recurrences

Fn+2,m
p,q = pFn+1,m

p,q + qFn,m
p,q(2.1)

Fn,m+2
p,q = pFn,m+1

p,q + qFn,m
p,q(2.2)

with the initial values F 0,0
p,q = 0, F 1,0

p,q = 1, F 0,1
p,q = i, and F 1,1

p,q = 1 + i.

Proposition 2.1. The following properties are apply:

1. Fn,0
p,q = Fn(p, q),

2. F 0,m
p,q = iFm(p, q),

3. F 1,m
p,q = Fm+1(p, q) + iFm(p, q),

4. Fn,1
p,q = Fn(p, q) + iFn+1(p, q).

5. Fn,m
p,q = Fn(p, q)Fm+1(p, q) + iFn+1(p, q)Fm(p, q).

Proof. 1. By the recurrence Fn+2,m
p,q = pFn+1,m

p,q + qFn,m
p,q , m = 0 and

the Mathematical Principle of Induction, we can prove the first assertion.
With this way, for n = 0:

F 0,0
p,q = F0(p, q) = 0

Hence F 0,0
p,q = 0 and the equality is true. Suppose that the desired equality

is true for any k 6 n. Thus, we write

F k,0
p,q = Fk(p, q).

Let’s show that it is true for k + 1. Then

F k+3,0
p,q = pF k+2,0

p,q + qF k+1,0
p,q

= pFk+2(p, q) + qFk+1(p, q)

= Fk+3(p, q).

Thus, the validity of Proposition 2.1 (1) has been confirmed.
2. The recurrence Fn,m+2

p,q = pFn,m+1
p,q +qFn,m

p,q , n = 0 and the Mathematical
Principle of Induction are used for the proof of this part. For m = 0:

F 0,0
p,q = iF0(p, q) = 0
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the equality is true, since F 0,0
p,q = iF0(p, q). Suppose it is true for any

k 6 m, Thus

F 0,k
p,q = iFk(p, q)

Let’s indicate that it is accurate for k + 1. Then

F 0,k+3
p,q = pF 0,k+2

p,q + qF 0,k+1
p,q

= piFk+2(p, q) + qiFk+1(p, q)

= iFk+3(p, q).

So, the validity of Proposition 2.1 (2) has been confirmed.
3. By the recurrence Fn+2,m

p,q = pFn+1,m
p,q +qFn,m

p,q , n = 1 and the Mathemat-
ical Principle of Induction, we can prove the third assertion. With this
way, for m = 0:

F 1,0
p,q = F1(p, q) + iF0(p, q) = 1

the equality is true. Suppose that the desired equality is true for any
k 6 m. Thus, we write

F 1,k
p,q = Fk+1(p, q) + iFk(p, q).

Let’s show that it is true for k + 1. Then

F 1,k+3
p,q = pF 1,k+2

p,q + qF 1,k+1
p,q

= p (Fk+3(p, q) + iFk+2(p, q)) + q (Fk+2(p, q) + iFk+1(p, q))

= (pFk+3(p, q) + qFk+2(p, q)) + i (pFk+2(p, q) + qFk+1(p, q))

= Fk+4(p, q) + iFk+3(p, q)

Thus, the validity of Proposition 2.1 (3) has been confirmed.
4. The recurrence Fn+2,m

p,q = pFn+1,m
p,q +qFn,m

p,q , m = 1 and the Mathematical
Induction Principle are used for the proof of this part. For n = 0:

F 0,1
p,q = F0(p, q) + iF1(p, q) = i

the equality is true. Suppose it is true for any k 6 n, Thus

F k,1
p,q = Fk(p, q) + iFk+1(p, q)

Let’s indicate that it is accurate for k + 1. Then

F k+3,1
p,q = pF k+2,1

p,q + qF k+1,1
p,q

= p (Fk+2(p, q) + iFk+3(p, q)) + q (Fk+1(p, q) + iFk+2(p, q))

= (pFk+2(p, q) + qFk+1(p, q)) + i (pFk+3(p, q) + qFk+2(p, q))

= Fk+3(p, q) + iFk+4(p, q).

So, the validity of Proposition 2.1 (4) has been confirmed.
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5. By the recurrence Fn+2,m
p,q = pFn+1,m

p,q + qFn,m
p,q and Fn,m+2

p,q = pFn,m+1
p,q +

qFn,m
p,q the Mathematical Principle of Induction, we can prove the fifth

assertion. With this way, for m = 0:

Fn,0
p,q = Fn(p, q)F1(p, q) + iFn+1(p, q)F0(p, q)

= Fn(p, q)

and for n = 0:

F 0,m
p,q = F0(p, q)Fm+1(p, q) + iF1(p, q)Fm(p, q)

= iFm(p, q)

the equalities are true. Suppose that the desired equalities are true for
any k 6 n and k 6 m, respectively, thus, we write

F k,m
p,q = Fk(p, q)Fm+1(p, q) + iFk+1(p, q)Fm(p, q)

and

Fn,k
p,q = Fn(p, q)Fk+1(p, q) + iFn+1(p, q)Fk(p, q).

Let’s show that these equalities is true. Then for n = k + 1,

F k+3,m
p,q = pF k+2,m

p,q + qF k+1,m
p,q

= p (Fk+2(p, q)Fm+1(p, q) + iFk+3(p, q)Fm(p, q))

+ q (Fk+1(p, q)Fm+1(p, q) + iFk+2(p, q)Fm(p, q))

= (pFk+2(p, q) + qFk+1(p, q))Fm+1(p, q)

+ i(p, q) (pFk+3(p, q) + qFk+2(p, q))Fm

= Fk+3(p, q)Fm+1(p, q) + iFk+4(p, q)Fm(p, q)

for m = k + 1,

Fn,k+3
p,q = pFn,k+2

p,q + qFn,k+1
p,q

= p (Fn(p, q)Fk+3(p, q) + iFn+1(p, q)Fk+2(p, q))

+ q (Fn(p, q)Fk+2(p, q) + iFn+1(p, q)Fk+1(p, q))

= Fn(p, q) (pFk+3(p, q) + qFk+2(p, q))

+ iFn+1(p, q) (pFk+2(p, q) + qFk+1(p, q))

= Fn(p, q)Fk+4(p, q) + iFn+1(p, q)Fk+3(p, q)

Thus, the validity of Proposition 2.1 (5) has been confirmed.
�

3. Three-dimensional Recurrences of the (p, q)−Fibonacci sequence

In this section the three-dimensional recurrence of the (p, q)−Fibonacci se-
quence is defined.
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Definition 3.1. For n,m, r ∈ N and p2 + 4q > 0, the three-dimensional of
(p, q)−Fibonacci sequence Fn,m,r

p,q is defined by the recurrences

Fn+2,m,r
p,q = pFn+1,m,r

p,q + qFn,m,r
p,q(3.1)

Fn,m+2,r
p,q = pFn,m+1,r

p,q + qFn,m,r
p,q(3.2)

Fn,m,r+2
p,q = pFn,m,r+1

p,q + qFn,m,r
p,q(3.3)

with the initial values F 0,0,0
p,q = 0, F 1,0,0

p,q = 1, F 0,1,0
p,q = i, F 0,0,1

p,q = j, F 1,1,0
p,q = 1 + i,

F 1,0,1
p,q = 1 + j, F 0,1,1

p,q = i + j, and F 1,1,1
p,q = 1 + i + j, where i2 = j2 = −1.

Proposition 3.1. The following properties are apply:

1. Fn,0,0
p,q = Fn(p, q),

2. F 0,m,0
p,q = iFm(p, q),

3. F 0,0,r
p,q = jFr(p, q),

4. Fn,1,0
p,q = Fn(p, q) + iFn+1(p, q),

5. Fn,0,1
p,q = Fn(p, q) + jFn+1(p, q),

6. Fn,1,1
p,q = Fn(p, q) + iFn+1(p, q) + jFn+1(p, q),

7. F 1,m,0
p,q = Fm+1(p, q) + iFm(p, q),

8. F 0,m,1
p,q = iFm(p, q) + jFm+1(p, q),

9. F 1,m,1
p,q = Fm+1(p, q) + iFm(p, q) + jFm+1(p, q),

10. F 1,0,r
p,q = Fr+1(p, q) + jFr(p, q),

11. F 0,1,r
p,q = iFr+1(p, q) + jFr(p, q),

12. F 1,1,r
p,q = Fr+1(p, q) + iFr+1(p, q) + jFr(p, q),

13. Fn,m,0
p,q = Fn(p, q)Fm+1(p, q) + iFn+1(p, q)Fm(p, q),

14. Fn,0,r
p,q = Fn(p, q)Fr+1(p, q) + jFn+1(p, q)Fr(p, q),

15. F 0,m,r
p,q = iFm(p, q)Fr+1(p, q) + jFm+1(p, q)Fr(p, q),

16. Fn,m,1
p,q = Fn(p, q)Fm+1(p, q)+iFn+1(p, q)Fm(p, q)+jFn+1(p, q)Fm+1(p, q),

17. Fn,1,r
p,q = Fn(p, q)Fr+1(p, q) + iFn+1(p, q)Fr+1(p, q) + jFn+1(p, q)Fr(p, q),

18. F 1,m,r
p,q = Fm+1(p, q)Fr+1(p, q)+iFm(p, q)Fr+1(p, q)+jFm+1(p, q)Fr(p, q),

19. Fn,m,r
p,q = Fn(p, q)Fm+1(p, q)Fr+1(p, q) + iFn+1(p, q)Fm(p, q)Fr+1(p, q) +

jFn+1(p, q)Fm+1(p, q)Fr(p, q),

Proof. The proofs are easily shown by the Mathematical Principle of Induc-
tion as in Proposition 2.1. �

The fourth-dimensional recurrences of the (p, q)−Fibonacci sequence are called
quaternions. Various investigation on the quaternions can be found in [14, 15, 1,
3, 13, 4, 5].

4. n−dimensional recurrences of the (p, q)−Fibonacci sequence

In this section the n−dimensional recurrences of the (p, q)−Fibonacci sequence
is defined.
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Definition 4.1. For n0, n1, ..., nn−1 ∈ N and p2 + 4q > 0, the n−dimensional
of (p, q)−Fibonacci sequence F

n0,n1,...,nn−1
p,q is defined by the recurrences

Fn0+2,n1,...,nn−1
p,q = pFn0+1,n1,...,nn−1

p,q + qFn0,n1,...,nn−1
p,q(4.1)

Fn0,n1+2,...,nn−1
p,q = pFn0,n1+1,...,nn−1

p,q + qFn0,n1,...,nn−1
p,q(4.2)

... =
...(4.3)

Fn0,n1,...,nn−1+2
p,q = pFn0,n1,...,nn−1+1

p,q + qFn0,n1,...,nn−1
p,q

with the initial values

F 0,0,0,...,0
p,q = 0,

F 1,0,0,...,0
p,q = 1,

F 0,1,0,...,0
p,q = e2,

F 0,0,1,...,0
p,q = e3,

... =
...

F 0,0,0,...,1
p,q = en,

... =
...

F 0,1,1,...,1
p,q = e1 + e2 + ... + en−1,

F 1,0,1,...,1
p,q = 1 + e2 + ... + en−1,

F 1,1,0,...,1
p,q = 1 + e1 + ... + en−1,

... =
...

F 1,1,1,...,0
p,q = 1 + e1 + e2 + ... + en−2

F 1,1,1,...,1
p,q = 1 + e1 + e2 + ... + en−1.

Note that here the unit vectors are 1 = e0, i = e, e2 = j,. . . , en−1.

Proposition 4.1. The following properties are apply:

1. Fn0,0,0,...,0
p,q = Fn0

(p, q),

2. F 0,n1,0,...,0
p,q = e1Fn1(p, q),

3. F
0,0,0,...,nn−1
p,q = en−1Fnn−1

(p, q),
4. Fn0,1,0,...,0

p,q = Fn0
(p, q) + e1Fn0+1(p, q),

5. Fn0,0,0,...,1
p,q = Fn0

(p, q) + en−1Fn0+1(p, q),

6. Fn0,1,1,...,1
p,q = Fn0(p, q) + e1Fn0+1(p, q) + ... + en−1Fn0+1(p, q),

7. F 1,n1,0,...,0
p,q = Fn1+1(p, q) + e1Fn1(p, q),

8. F 0,n1,0,...,1
p,q = e1Fn1

(p, q) + en−1Fn1+1(p, q),

9. F 1,n1,1,...,1
p,q = Fn1+1(p, q) + e1Fn1

(p, q) + ... + en−1Fn1+1(p, q),

10. F
1,0,0,...,nn−1
p,q = Fnn+1(p, q) + en−1Fnn−1(p, q),

11. F
0,1,0,...,nn−1
p,q = e1Fnn+1(p, q) + en−1Fnn−1

(p, q),
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12. F
1,1,1,...,nn−1
p,q = Fnn+1(p, q) + e1Fnn+1(p, q) + ... + en−1Fnn−1

(p, q),
13. Fn0,n1,n2,...,0

p,q = Fn0
(p, q)Fn1+1(p, q)...Fnn−2+1(p, q)

+ e1Fn0+1(p, q)Fn1
(p, q)...Fnn−2+1(p, q) + ... +

+ en−2Fn0+1(p, q)Fn1+1(p, q)...Fnn−2
(p, q),

14. F
n0,0,n2,...,nn−1
p,q = Fn0

(p, q)Fn2+1(p, q)...Fnn−1+1(p, q)
+ e2Fn0+1(p, q)Fn2

(p, q)...Fnn−1+1(p, q) + ... +
+ en−1Fn0+1(p, q)Fn2+1(p, q)...Fnn−1

(p, q),

15. F
0,n1,n2,...,nn−1
p,q = e1Fn1(p, q)Fn2+1(p, q)...Fnn−1+1(p, q)

+ e2Fn1+1(p, q)Fn2
(p, q)...Fnn−1+1(p, q) + ... +

+ en−2Fn1+1(p, q)Fn2+1(p, q)...Fnn−1
(p, q),

16. Fn0,n1,n2,...,1
p,q = Fn0

(p, q)Fn1+1(p, q)...Fnn−2+1(p, q)
+ e1Fn0+1(p, q)Fn1

(p, q)...Fnn−2+1(p, q) + ... +
+ en−2Fn0+1(p, q)Fn1+1(p, q)...Fnn−2

(p, q)
+ en−1Fn0+1(p, q)Fn1+1(p, q)...Fnn−1+1(p, q),

17. F
n0,1,n2,...,nn−1
p,q = Fn0

(p, q)Fn2+1(p, q)...Fnn−1+1(p, q)
+ e1Fn0+1(p, q)Fn2+1(p, q)...Fnn−1+1(p, q)
+ e2Fn0+1(p, q)Fn2

(p, q)...Fnn−1+1(p, q) + ... +
+ en−1Fn0+1(p, q)Fn2+1(p, q)...Fnn−1(p, q),

18. F
0,n1,n2,...,nn−1
p,q = Fn1+1(p, q)Fn2+1(p, q)...Fnn−1+1(p, q)

+ e1Fn1
(p, q)Fn2+1(p, q)...Fnn−1+1(p, q)

+ e2Fn1+1(p, q)Fn2
(p, q)...Fnn−1+1(p, q) + ... +

+ en−2Fn1+1(p, q)Fn2+1(p, q)...Fnn−1(p, q),

19. F
n0,n1,n2,...,nn−1
p,q = Fn0

(p, q)Fn1+1(p, q)...Fnn−1+1(p, q)
+ e1Fn0+1(p, q)Fn1(p, q)...Fnn−1+1(p, q) + ... +
+ en−1Fn0+1(p, q)Fn1+1(p, q)...Fnn−1(p, q),

Proof. The proofs are easily shown by the Mathematical Principle of Induc-
tion as in Proposition 2.1 . �
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