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ON S-2-ABSORBING FILTERS OF LATTICES

Shahabaddin Ebrahimi Atani

Abstract. Let £ be a bounded distributive lattice and S a join closed subset

of £. Following the concept of S-2-absorbing submodules, we define S-2-

absorbing filters of £. Let p be a filter of £ disjoint with S. We say that p is
an S-2-absorbing filter of £ if there is a fixed s ∈ S such that for all x, y, z ∈ £

if x ∨ y ∨ z ∈ p, then s ∨ x ∨ y ∈ p or s ∨ y ∨ z ∈ p or s ∨ x ∨ z ∈ p. We will

make an intensive investigation of the basic properties and possible structures
of these filters.

1. Introduction

All lattices considered in this paper are assumed to have a least element denoted
by 0 and a greatest element denoted by 1, in other words they are bounded. Our
objective in this paper is to extend the notion of S-2-absorbing property in modules
theory to S-2-absorbing property in the lattices, and to investigate the relations
between S-2-absorbing filters and 2-absorbing filters. Indeed, we are interested
in investigating S-2-absorbing filters to use other notions of S-2-absorbing and
associate which exist in the literature as laid forth in [11, 13].

The notion of prime ideals has a significant place in the theory of rings, and
it is used to characterize certain classes of rings. For years, there have been many
studies and generalizations on this issue. See, for example, [3, 6, 9, 10, 11, 12, 13].
Badawi generalized the concept of prime ideals in [3]. We recall from [3] that a
proper ideal I of a commutative ring R is said to be a 2-absorbing ideal if whenever
abc ∈ I for a, b, c ∈ R, then ab ∈ I or ac ∈ I or bc ∈ I (also see [6]). In 2019,
Hamed and Malek [10] introduced the notion of an S-prime ideal, i.e. let S ⊆ R be
a multiplicative set and I an ideal of R disjoint from S. We say that I is S-prime
if there exists an s ∈ S such that for all a, b ∈ R with ab ∈ I, we have sa ∈ I or
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sb ∈ I (also see [12]). In 2020, Ulucak, Tekir and Koc [13] introduced the notion
of an S-2-absorbing submodules, i.e. let S ⊆ R be a multiplicative set and P a
submodule of an R-module M with S ∩ (P :R M) = ∅. We say that P is an
S-2-absorbing submodule if there exists an element s ∈ S and whenever abm ∈ P
for some a, b ∈ R and m ∈ M , then sab ∈ (P :R M) or sam ∈ P or sbm ∈ P .
In 2021, Naji [11] introduced the notion of an S-2-absorbing primary submodules,
i.e. let S ⊆ R be a multiplicative set and P a submodule of an R-module M with
S ∩ (P :R M) = ∅. We say that P is an S-2-absorbing primary submodule if there
exists an element s ∈ S and whenever abm ∈ P for some a, b ∈ R and m ∈ M , then
sab ∈

√
(P :R M) or sam ∈ P or sbm ∈ P .

Let £ be a bounded distributive lattice. We say that a subset S ⊆ £ is join
closed if 0 ∈ S and s1 ∨ s2 ∈ S for all s1, s2 ∈ S (if p is a prime filter of £,
then £ ∖ p is a join closed subset of £). Among many results in this paper,
the first, preliminaries section contains elementary observations needed later on.
Section 3 is dedicated to the investigate the some basic properties of S-2-absorbing
filters. At first, we give the definition of S-2-absorbing filters (Definition 3.1) and
provide an example (Example 3.2) of an S-2-absorbing filter of £ that is not a
2-absorbing filter. It is shown (Theorem 3.1) that if S is a join closed subset of £,
then the intersection of two S-prime filters is an S-2-absorbing filter. Also, we give
three other characterizations of S-2-absorbing filters (see Lemma 3.1, Lemma 3.2,
Proposition 3.2 and Theorem 3.2). We continue in Section 4 by investigation the
stability of S-2-absorbing filters in various lattice-theoretic constructions. Indeed,
we investigate the behavior of S-2-absorbing filters under homomorphism, in factor
lattices, S-Noetherian lattices, and in cartesian products of lattices (see Theorem
4.2, Theorem 4.3, Theorem 4.4, Theorem 4.5, Theorem 4.7, and Theorem 4.8).

2. Preliminaries

Let us recall some notions and notations. By a lattice we mean a poset (£,⩽)
in which every couple elements x, y has a g.l.b. (called the meet of x and y, and
written x∧ y) and a l.u.b. (called the join of x and y, and written x∨ y). A lattice
£ is complete when each of its subsets X has a l.u.b. and a g.l.b. in £. Setting
X = £, we see that any non-void complete lattice contains a least element 0 and
greatest element 1 (in this case, we say that £ is a lattice with 0 and 1). A lattice
£ is called a distributive lattice if (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for all a, b, c in £
(equivalently, £ is distributive if (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c) for all a, b, c in £).
A non-empty subset F of a lattice £ is called a filter, if for a ∈ F , b ∈ £, a ⩽ b
implies b ∈ F , and x∧ y ∈ F for all x, y ∈ F (so if £ is a lattice with 1, then 1 ∈ F
and {1} is a filter of £). A proper filter F of £ is called prime if x ∨ y ∈ F , then
x ∈ F or y ∈ F . A proper filter F of £ is said to be maximal if G is a filter in £
with F ⫋ G, then G = £. The intersection of all filters containing a given subset
A of £ is the filter generated by it, is denoted by T (A). A filter F is called finitely
generated if there is a finite subset A of F such that F = T (A). A proper filter F
of a lattice £ is called a 2-absorbing filter if whenever a, b, c ∈ £ and a∨ b∨ c ∈ F ,
then a ∨ b ∈ F or a ∨ c ∈ F or b ∨ c ∈ F . Let p be a filter of £ and S a join closed
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subset of £ disjoint with S. We say that p is an S-prime filter of £ if there is an
element s ∈ S such that for all x, y ∈ £ if x ∨ y ∈ p, then x ∨ s ∈ p or y ∨ s ∈ p.

A lattice £ with 1 is called £-domain if a ∨ b = 1 (a, b ∈ £), then a = 1 or
b = 1 (so £ is £-domain if and only if {1} is a prime filter of £). If x ∈ £, then
a complement of x in £ is an element y ∈ £ such that x ∨ y = 1 and x ∧ y = 0.
The lattice £ is complemented if every element of £ has a complement in £. If £
and £′ are lattices, then a lattice homomorphism f : £ → £′ is a map from £ to
£′ satisfying f(x ∨ y) = f(x) ∨ f(y) and f(x ∧ y) = f(x) ∧ f(y) for x, y ∈ £. First
we need the following lemmas proved in [5, 6, 7, 8, 9].

Lemma 2.1. Let £ be a lattice.
(1) A non-empty subset F of £ is a filter of £ if and only if x ∨ z ∈ F and

x ∧ y ∈ F for all x, y ∈ F , z ∈ £. Moreover, since x = x ∨ (x ∧ y), y = y ∨ (x ∧ y)
and F is a filter, x ∧ y ∈ F gives x, y ∈ F for all x, y ∈ £.

(2) Let A be an arbitrary non-empty subset of £. Then

T (A) = {x ∈ £ : a1 ∧ a2 ∧ · · · ∧ an ⩽ x for some ai ∈ A (1 ⩽ i ⩽ n)}.
Moreover, if F is a filter and A is a subset of £ with A ⊆ F , then T (A) ⊆ F ,
T (F ) = F and T (T (A)) = T (A)

(3) If {Fi}i∈∆ is a chain of filters of £, then
⋃

i∈∆ Fi is a filter of £.

Lemma 2.2. Let F,G be filters of £ and x ∈ £. The following hold:
(1) F ∨G = {a ∨ b : a ∈ F, b ∈ G} and x ∨ F = {a ∨ y : y ∈ F} are filters of £

with F ∨G = F ∩G.
(2) If £ is distributive, then F ∧G = {a∧ b : a ∈ F, b ∈ G} is a filter of £ with

F,G ⊆ F ∧G
(3) If £ is distributive, F,G are filters of £ and y ∈ £, then (G :£ F ) = {x ∈

£ : x ∨ F ⊆ G} and (F :£ T ({y})) = (F :L y) = {a ∈ £ : a ∨ y ∈ F} are filters of
£.

(4) If £ is distributive, G,F1, F2 are filters of £, then G ∨ (F1 ∧ F2) = (G ∨
F1) ∧ (G ∨ F2).

Assume that (£1,⩽1), (£2,⩽2), · · · , (£n,⩽n) are lattices (n ⩾ 2) and let £ =
£1 × £2 × · · · × £n. We set up a partial order ⩽c on £ as follows: for each
x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ £, we write x ⩽c y if and only if
xi ⩽i yi for each i ∈ {1, 2, · · · , n}. The following notation below will be kept in
this paper: It is straightforward to check that (£,⩽c) is a lattice with x ∨c y =
(x1 ∨ y1, x2 ∨ y2, · · · , xn ∨ yn) and x ∧c y = (x1 ∧ y1, · · · , xn ∧ yn). In this case, we
say that £ is a decomposable lattice.

Quotient lattices are determined by equivalence relations rather than by ideals
as in the ring case. If F is a filter of a lattice (£,⩽), we define a relation on £,
given by x ∼ y if and only if there exist a, b ∈ F satisfying x∧ a = y∧ b. Then ∼ is
an equivalence relation on £, and we denote the equivalence class of a by a∧F and
these collection of all equivalence classes by £/F . We set up a partial order ⩽Q on
£/F as follows: for each a∧F, b∧F ∈ £/F , we write a∧F ⩽Q b∧F if and only if
a ⩽ b. The following notation below will be used in this paper: It is straightforward
to check that (£/F,⩽Q) is a lattice with (a ∧ F ) ∨Q (b ∧ F ) = (a ∨ b) ∧ F and
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(a ∧ F ) ∧Q (b ∧ F ) = (a ∧ b) ∧ F for all elements a ∧ F, b ∧ F ∈ £/F . Note that
e ∧ F = F = 1 ∧ F if and only if e ∈ F (see [8, Remark 4.2 and Lemma 4.3]).

3. Characterization of S-2-absorbing filters

In this section, we collect some basic properties concerning S-2-absorbing fil-
ters. We remind the reader with the following definition.

Definition 3.1. Let p be a filter of £ and S a join closed subset of £. A filter
p is said to be S-2-absorbing if p ∩ S = ∅ and there exists a fixed s ∈ S such that
for any x, y, z ∈ £ with x ∨ y ∨ z ∈ p, then s ∨ x ∨ y ∈ p or s ∨ x ∨ z ∈ p or
s ∨ y ∨ z ∈ p.

example 3.1. (1) If S = {0}, then the 2-absorbing and the S-2-absorbing
filters of £ are the same.

(2) If p is a 2-absorbing filter of £ disjoint with S, then p is an S-2-absorbing
filter.

(3) Let£ = {0, a, b, c, 1} be a lattice with the relations 0 ⩽ a ⩽ c ⩽ 1, 0 ⩽
b ⩽ c ⩽ 1, a ∨ b = c and a ∧ b = 0. An inspection will show that the nontrivial
filters (i.e. different from £ and {1}) of £ are p1 = {1, c}, p2 = {1, c, a} and
p3 = {1, c, b}. Set S = {0, a}. Then S is a join closed subset of £ with S ∩p1 = ∅.
Since p2∩p3 = p1, we conclude that p1 is a 2-absorbing filter by [6, Theorem 2.8];
hence p1 is S-2-absorbing by (2).

example 3.2. Let £1 = {0, a, b, c, d, 1} be a lattice with the relations 0 ⩽ a ⩽
d ⩽ 1, 0 ⩽ b ⩽ d ⩽ 1, 0 ⩽ c ⩽ 1 and a ∧ b = a ∧ c = d ∧ c = c ∧ b = 0.
Suppose that £ = £1 × £1, p = {b, d, 1} × {1} and S = {0, c} × {0, c}; so p
is a filter of £ with p ∩ S = ∅. Then p is an S-2-absorbing filter. Indeed, let
(a1, b1) ∨c (a2, b2) ∨c (a3, b3) ∈ p for some (a1, b1), (a2, b2), (a3, b3) ∈ £. Then
an inspection will show that (c, c) ∈ S and (a1, b1) ∨c (a2, b2) ∨c (c, c) ∈ p or
(a1, b1) ∨c (a3, b3) ∨c (c, c) ∈ p or (a3, b3) ∨c (a2, b2) ∨c (c, c) ∈ p, as needed.

On the other hand, p is not a 2-absorbing filter since (b, 0) ∨ (c, d) ∨ (0, c) =
(1, 1) ∈ p but neither (b, 0) ∨ (c, d) = (1, d) ∈ p nor (b, 0) ∨ (0, c) = (b, c) ∈ p nor
(c, d) ∨ (0, c) = (c, 1) ∈ p. Thus an S-2-absorbing filter need not be a 2-absorbing
filter.

example 3.3. Let S′ ⊆ S be join closed subsets of £ and p a filter of £
disjoint with S. It is clear that if p is an S′-2-absorbing filter of £, then p is an
S-2-absorbing filter. However, the converse is not true in general. Indeed, assume
that £ is the lattice as in Example 3.2 and let S′ = {(0, 0)} ⊆ S = {0, c} × {0, c}.
Then p = {b, d, 1} × {1} is an S-2-absorbing filter of £ but not an S′-2-absorbing
filter of £.

Proposition 3.1. Let S, S′ be join closed subsets of £. The following hold:
(1) Every S-prime filter is an S-2-absorbing filter;
(2) If S′ ⊆ S such that for any s ∈ S, there exists t ∈ S satisfying s ∨ t ∈ S′.

If p is an S-2-absorbing filter of £, then p is an S′-2-absorbing filter of £.
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Proof. (1) It is clear.
(2) Let x, y, z ∈ £ such that x ∨ y ∨ z ∈ p. Then there exists s ∈ S such that

s∨x∨y ∈ p or s∨x∨ z ∈ p or s∨y∨ z ∈ p. By the hypothesis, there is t ∈ S such
that s∨ t ∈ S′ and then s∨ t∨ x∨ y ∈ p or s∨ t∨ x∨ z ∈ p or s∨ t∨ y ∨ z ∈ p, as
p is a filter. This shows that p is S′-2-absorbing. □

Compare the next theorem with Proposition 2 in [13].

Theorem 3.1. If S is a join closed subset of £, then the intersection of two
S-prime filters is an S-2-absorbing filter.

Proof. Let p1,p2 be two S-prime filters of £ and p = p1∩p2. Suppose that
a ∨ b ∨ c ∈ p for some a, b, c ∈ £. Since p1 is an S-prime filter and a ∨ b ∨ c ∈ p1,
there exists t1 ∈ S such that t1∨a ∈ p1 or t1∨b∨c ∈ p1. If t1∨b∨c ∈ p1, then p1

is an S-prime gives there exists t′1 ∈ S such that either t′1∨b ∈ p1 or t′1∨t1∨c ∈ p1.
Set s1 = t1 ∨ t′1 ∈ S. Then either s1 ∨ b ∈ p1 or s1 ∨ c ∈ p1. Similarly, since p2

is an S-prime filter and a ∨ b ∨ c ∈ p2, we conclude that there exists s2 ∈ S such
that s2 ∨ a ∈ p2 or s2 ∨ b ∈ p2 or s2 ∨ c ∈ p2. Without loss of generality, we can
assume that s1 ∨ a ∈ p1 and s2 ∨ c ∈ p2. Now we put s = s1 ∨ s2. This shows that
s ∨ a ∨ c ∈ p and so p is an S-2-absorbing filter of £. □

Lemma 3.1. Let p be a filter of £ and S a join closed subset of £ disjoint with
p. The following assertions are equivalent:

(1) p is an S-2-absorbing filter of £;
(2) There exists an s ∈ S such that whenever (a∨ b)∨F ⊆ p for some filter F

of £ and a, b ∈ £ implies either s∨ a∨ b ∈ p or (s∨ b)∨F ⊆ p or (s∨ a)∨F ⊆ p.

Proof. (1) ⇒ (2) By the hypothesis, there exists an s ∈ S such that x∨y∨z ∈
p for some x, y, z ∈ £ implies s ∨ x ∨ y ∈ p or s ∨ x ∨ z ∈ p or s ∨ y ∨ z ∈ p.
Let (a ∨ b) ∨ F ⊆ p for some a, b ∈ £ and a filter F of £. Let s ∨ a ∨ b /∈ p and
(s ∨ a) ∨ F ⊈ p. So there exists f ∈ F such that s ∨ a ∨ f /∈ p. Since a ∨ b ∨ f ∈ p
and p is S-2-absorbing, we get s ∨ b ∨ f ∈ p. We show that (s ∨ b) ∨ F ⊆ p. Let
e ∈ F . Then (e∧f)∨a∨b ∈ p and hence either s∨(f ∧e)∨b ∈ p or s(f ∧e)∨a ∈ p.
If s ∨ (f ∧ e) ∨ b = (s ∨ b ∨ f) ∧ (s ∨ b ∨ e) ∈ p, then s ∨ b ∨ e ∈ p by Lemma 2.1.
If s ∨ (f ∧ e) ∨ a = (s ∨ a ∨ f) ∧ (s ∨ a ∨ e) ∈ p gives s ∨ a ∨ f ∈ p by Lemma 2.1
which is a contradiction; so s ∨ b ∨ e ∈ p. This shows that (s ∨ b) ∨ F ⊆ p.

(2) ⇒ (1) If a ∨ b ∨ c ∈ p for some a, b, c ∈ £, then (a ∨ b) ∨ T ({c}) ⊆ p gives
there exists an s ∈ S such that either s∨a∨ b ∈ p or s∨ b∨ c ∈ (s∨ b)∨T ({c}) ⊆ p
or s ∨ a ∨ c ∈ (s ∨ a) ∨ T ({c}) ⊆ p by (2), as needed. □

Lemma 3.2. Let p be a filter of £ and S a join closed subset of £ disjoint with
p. The following assertions are equivalent:

(1) p is an S-2-absorbing filter of £;
(2) There exists an s ∈ S such that a ∨ (F ∨G) ⊆ p for some filters F,G of £

and a ∈ £, then either (s ∨ a) ∨ F ⊆ p or (s ∨ a) ∨G ⊆ p or s ∨ (F ∨G) ⊆ p.

Proof. (1) ⇒ (2) Let p be an S-2-absorbing filter of £. Then we assume that
s ∈ S satisfies S-2-absorbing condition. Let a ∨ (F ∨ G) ⊆ p for some filters F,G
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of £ and a ∈ £ and suppose that (s ∨ a) ∨ F ⊈ p and (s ∨ a) ∨ G ⊈ p. We want
to show that s ∨ (F ∨ G) ⊆ p. Let f ∈ F and g ∈ G. There exists b ∈ F ∖ p
such that s ∨ a ∨ b /∈ p. Since (a ∨ b) ∨ G ⊆ p, we conclude that (s ∨ b) ∨ G ⊆ p
by Lemma 3.1 and so s ∨ (F ∖ p) ∨ G ⊆ p. Similarly, there exists c ∈ G ∖ p
such that (s ∨ c) ∨ F ⊆ p and s ∨ (G ∖ p) ∨ F ⊆ p. Thus we have s ∨ b ∨ c ∈ p,
s ∨ b ∨ g ∈ p and s ∨ f ∨ c ∈ p. As b ∧ f ∈ F and g ∧ c ∈ G, we conclude that
(b ∧ f) ∨ (g ∧ c) ∨ a ∈ p. Hence, s ∨ (b ∧ f) ∨ a ∈ p or s ∨ (g ∧ c) ∨ a ∈ p or
s ∨ (b ∧ f) ∨ (g ∧ c) ∈ p. If s ∨ (b ∧ f) ∨ a = (s ∨ a ∨ b) ∧ (s ∨ a ∨ f) ∈ p, then
s ∨ a ∨ b ∈ p by Lemma 2.1, a contradiction. Similarly, s ∨ (c ∧ g) ∨ a /∈ p. So
s ∨ (b ∧ f) ∨ (g ∧ c) = (s ∨ c ∨ f) ∧ (s ∨ c ∨ b) ∧ (s ∨ g ∨ f) ∧ (s ∨ g ∨ b) ∈ p. This
shows that s ∨ f ∨ g ∈ p by Lemma 2.1. Therefore, s ∨ (F ∨G) ⊆ P.

(2) ⇒ (1) If a ∨ b ∨ c ∈ p for some a, b, c ∈ £, then a ∨ (T ({b}) ∨ T ({c})) ⊆ p
gives there exists an s ∈ S such that s ∨ a ∨ b ∈ (s ∨ a) ∨ T ({b}) ⊆ p or s ∨ a ∨ c ∈
(s∨a)∨T ({c}) ⊆ p or s∨ b∨ c ∈ s∨ (T ({b})∨T ({c})) ⊆ p by (2), as required. □

Proposition 3.2. Let p be a filter of £ and S a join closed subset of £ disjoint
with p. The following assertions are equivalent:

(1) p is an S-2-absorbing filter of £;
(2) There exists a fixed s ∈ S such that whenever F ∨G∨K ⊆ p for some filters

F,G,K of £, then either s ∨ (F ∨G) ⊆ p or s ∨ (F ∨K) ⊆ p or s ∨ (G ∨K) ⊆ p.

Proof. (1) ⇒ (2) Let p be an S-2-absorbing filter of £ and assume that
s ∈ S satisfies S-2-absorbing condition. Suppose that F ∨ G ∨ K ⊆ p for some
filters F,G,K of £ and s ∨ (F ∨ G) ⊈ p. Then for each x ∈ K, x ∨ (F ∨ G) ⊆ p
gives either (s ∨ x) ∨ F ⊆ p or (s ∨ x) ∨G ⊆ p by Lemma 3.2. If for every x ∈ K,
(s ∨ x) ∨ F ⊆ p, then s ∨ (F ∨K) ⊆ p. Similarly, if for all x ∈ K, (s ∨ x) ∨G ⊆ p,
we have s ∨ (G ∨ K) ⊆ p. We are going to show that either s ∨ (F ∨ K) ⊆ p or
s∨(G∨K) ⊆ p. Assume on the contrary, that s∨(F ∨K) ⊈ p and s∨(G∨K) ⊈ p.
So there exist k1, k2 ∈ K such that (s∨k1)∨F ⊈ p and (s∨k2)∨G ⊈ p. Therefore,
(s∨k2)∨F ⊆ p and (s∨k1)∨G ⊆ p. Since (k1∧k2)∨(F ∨G) ⊆ p, we conclude that
s∨ (k1∧k2)∨F ⊆ p or s∨ (k1∧k2)∨G ⊆ p by Lemma 3.2. If s∨ (k1∧k2)∨F ⊆ p,
then for all f ∈ F , s∨(k1∧k2)∨f = (s∨k1∨f)∧(s∨k2∨f) ∈ p which implies that
s∨k1∨ f ∈ p by Lemma 2.1; hence (s∨k1)∨F ⊆ p which is impossible. Similarly,
by s ∨ (k1 ∧ k2) ∨ G ⊆ p, we get a contradiction. Therefore, s ∨ (F ∨ K) ⊆ p or
s ∨ (G ∨K) ⊆ p.

(2) ⇒ (1) If a∨b∨c ∈ p for some a, b, c ∈ £, then T ({a})∨(T ({b})∨T ({c})) ⊆ p
gives there exists an s ∈ S such that s ∨ a ∨ b ∈ s ∨ (T ({a}) ∨ T ({b})) ⊆ p or
s ∨ a ∨ c ∈ s ∨ (T ({a})) ∨ T ({c})) ⊆ p or s ∨ b ∨ c ∈ s ∨ (T ({b}) ∨ T ({c})) ⊆ p by
(2), as required. □

We next give three other characterizations of S-2-absorbing filters. Compare
the next theorem with Theorem 1 in [13].

Theorem 3.2. Let p be a filter of £ and S a join closed subset of £ disjoint
with p. The following assertions are equivalent:

(1) p is an S-2-absorbing filter of £;
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(2) There exists an s ∈ S such that whenever (a∨ b)∨F ⊆ p for some filter F
of £ and a, b ∈ £ implies either s∨ a∨ b ∈ p or (s∨ b)∨F ⊆ p or (s∨ a)∨F ⊆ p.

(3) (2) There exists an s ∈ S such that a ∨ (F ∨G) ⊆ p for some filters F,G
of £ and a ∈ £, then either (s∨ a)∨F ⊆ p or (s∨ a)∨G ⊆ p or s∨ (F ∨G) ⊆ p.

(4) There exists an s ∈ S such that whenever F ∨G ∨K ⊆ p for some filters
F,G,K of £, then either s ∨ (F ∨G) ⊆ p or s ∨ (F ∨K) ⊆ p or s ∨ (G ∨K) ⊆ p.

Proof. This is a direct consequence Lemma 3.1, Lemma 3.2 and Proposition
3.2. □

4. Further results

We continue in this section by investigation the stability of S-2-absorbing filters
in various lattice-theoretic constructions.

Proposition 4.1. Let p be a filter of £, e ∈ £ and S a join closed subset of
£ with (p :£ e) ∩ S = ∅. If p is an S-2-absorbing filter of £, then (p :£ e) is a
S-2-absorbing filter of £.

Proof. Let P be an S-2-absorbing filter of £. Suppose that s ∈ S satisfies
the S-2-absorbing condition. Let a ∨ b ∨ c ∈ (p :£ e) for some a, b, c ∈ £. Set
F = T ({a}), G = T ({b}) and K = T ({c ∨ e}). Then F ∨ G ∨ K ⊆ p gives
s ∨ a ∨ b ∈ s ∨ (F ∨G) ⊆ p (so s ∨ a ∨ b ∨ e ∈ p) or s ∨ a ∨ c ∨ e ∈ s ∨ (F ∨K) ⊆ p
or s ∨ b ∨ c ∨ e ∈ s ∨ (G ∨ K) ⊆ p by Theorem 3.10; so s ∨ a ∨ b ∈ (p :£ e) or
s∨ a∨ c ∈ (p :£ e) or s∨ b∨ c ∈ (p :£ e). Hence, (p :£ e) is an S-2-absorbing filter
of £. □

Compare the next theorem with Theorem 4 in [13].

Theorem 4.1. Let p be a filter of £ and S a join closed subset of £ with
p ∩ S = ∅. The following assertions are equivalent:

(1) p is an S-2-absorbing filter of £;
(2) (p :£ s) is a 2-absorbing filter for some s ∈ S.

Proof. (1) ⇒ (2) Let P be an S-2-absorbing filter of £. Then we keep in
mind that there exists a fixed s ∈ S that satisfies the S-2-absorbing condition.
Since p ∩ S = ∅, we conclude that (p :£ s) ∩ S = ∅. Let x ∨ y ∨ z ∈ (p :£ s) for
some x, y, z ∈ £. Then by (1), s ∨ x ∨ y ∈ p or s ∨ x ∨ (s ∨ z) = s ∨ x ∨ z ∈ p or
s ∨ y ∨ (s ∨ z) = s ∨ y ∨ z ∈ p which gives x ∨ y ∈ (p :£ s) or x ∨ z ∈ (p :£ s) or
y ∨ z ∈ (p :£ s). Hence, (p :£ s) is a 2-absorbing filter of £.

(2) ⇒ (1) Let (p :£ s) be a 2-absorbing filter for some s ∈ S and x ∨ y ∨ z ∈ p
(so s∨x∨y∨z ∈ p) for some x, y, z ∈ £ which implies that x∨y∨z ∈ (p :£ s). Then
(p :£ s) is 2-absorbing gives x∨ y ∈ (p :£ s) or x∨ z ∈ (p :£ s) or y ∨ z ∈ (p :£ s),
as required. □

Proposition 4.2. Let p be a filter of £ and S a join closed subset of £ disjoint
with p. The following hold:

(1) Let q be a filter of £ such that q ∩ S ̸= ∅. If p is an S-2-absorbing filter,
then p ∨ q is an S-2-absorbing filter of £;
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(2) Let £ ⊆ £′ an extension of lattices. If p is an S-2-absorbing filter of £′,
then p ∨£ is an S-2-absorbing filter of £;

Proof. (1) Clearly, S ∩ (p ∨ q) = ∅. Let t ∈ S ∩ q and x ∨ y ∨ z ∈ p ∨ q ⊆ p
for some x, y, z ∈ £. Then there is an element s ∈ S such that s ∨ x ∨ y ∈ p or
s∨ y∨ z ∈ p or s∨x∨ z ∈ p which gives s∨ t∨x∨ y ∈ p∨q or s∨ t∨ y∨ z ∈ p∨q
or s ∨ t ∨ x ∨ z ∈ p ∨ q, where s ∨ t ∈ S, i.e. (1) holds.

(2) Since £ ∩ S ̸= ∅, then (1) shows that (2) holds. □

Let £ and £′ be two lattices and f : £ → £′ be a lattice homomorphism such
that f(1) = 1. Then it is easy to see that Ker(f) = {x ∈ £ : f(x) = 1} is a filter
of £. Compare the next theorem with Proposition 4 in [13].

Theorem 4.2. Let f : £ → £′ be a lattice homomorphism such that f(1) = 1
and f(a) ̸= 1 for all 1 ̸= a ∈ £ and S is a join closed subset of £. The following
hold:

(1) f(S) is a join closed subset of £′ and if q is an f(S)-2-absorbing filter of
£′, then p = f−1(q) is an S-2-absorbing filter of £.

(2) If £ is a complemented lattice, f is onto and p is an S-2-absorbing filter of
£ containing Ker(f) with f(S) ∩ f(p) = ∅, then f(p) is an f(S)-2-absorbing filter
of £′.

Proof. (1) Clearly, f(S) is a join closed subset of £′ and p is a filter of £.
By assumption, there exists s ∈ S such that for all x, y, z ∈ £′ if x∨y∨ z ∈ q, then
f(s) ∨ x ∨ y ∈ q or f(s) ∨ y ∨ z ∈ q or f(s) ∨ x ∨ z ∈ q. It is clear that p ∩ S = ∅.
Let a, b, c ∈ £ such that a∨ b∨ c ∈ p; so f(a∨ b∨ c) = f(a)∨ f(b)∨ f(c) ∈ q which
gives f(s)∨ f(a)∨ f(b) = f(s∨ a∨ b) ∈ q or f(s)∨ f(b)∨ f(c) = f(s∨ b∨ c) ∈ q or
f(s)∨ f(a)∨ f(c) = f(s∨ a∨ c) ∈ q. This implies that s∨ a∨ b ∈ p or s∨ a∨ c ∈ p
or s ∨ b ∨ c ∈ q, as required.

(2) It is easy to see that f(p) is a filter of £′. Suppose that x ∨ y ∨ z ∈ f(p)
for some x, y, z ∈ £′. Then there exist a, b, c ∈ £ such that x = f(a), y = f(b) and
z = f(c). Therefore f(a∨ b∨ c) = f(a)∨ f(b)∨ f(c) ∈ f(p); so f(a∨ b∨ c) = f(d)
for some d ∈ p. Since £ is complemented, there exists e ∈ £ such that e ∨ d = 1
and d ∧ e = 0. Set v = a ∨ b ∨ c (so v ∨ d ∈ p, as p is a filter). Then f(v ∨ e) =
f(v) ∨ f(e) = f(d) ∨ f(e) = f(1) = 1; hence v ∨ e ∈ Ker(f) ⊆ p. Now p is a
filter gives (v ∨ d) ∧ (v ∨ e) = v ∈ p. Therefore there is an element s ∈ S such
that s ∨ a ∨ b ∈ p or s ∨ a ∨ c ∈ p or s ∨ b ∨ c ∈ p, and so f(s) ∨ x ∨ y ∈ f(p) or
f(s) ∨ x ∨ z ∈ f(p′) or f(s) ∨ y ∨ z ∈ p. Hence f(p) is a f(S)-2-absorbing filter of
£′. □

An element x of £ is called identity join of a lattice £, if there exists 1 ̸= y ∈ £
such that x ∨ y = 1. The set of all identity joins of a lattice £ is denoted by I(£).
Let p be a filter of £ and S a join closed subset of £ disjoint with p. It is clear that
SQ = {s ∧ p : s ∈ S} is a join closed subset of £/p. The next result determines
the class of lattices for which their S-2-absorbing filters and 2-absorbing filters are
the same.
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Proposition 4.3. Let p be a filter of £ and S a join closed subset of £
disjoint with p. If I(£/p) ∩ SQ = ∅, then the 2-absorbing and the S-2-absorbing
filters coincide.

Proof. It suffices to show that p = (p :£ s) for all s ∈ S by Theorem 4.1.
Since the inclusion P ⊆ (P :£ s) is clear, we will prove the reverse inclusion. Let
s ∈ S and x ∈ (p :£ s). Then s∨x ∈ p gives (s∧p)∨Q (x∧p) = (s∨x)∧p = 1∧p

by [8, Lemma 4.3]. Since I(£p ) ∩ SQ = ∅, we conclude that x ∧ p = 1 ∧ p; so

x ∧ p1 = 1 ∧ p2 = p2 for some p1, p2 ∈ p. This implies that x ∈ p by Lemma 2.1,
as needed. □

Theorem 4.3. Let q be a filter of £ and S a join closed subset of £ with
S ∩ q = ∅. The following hold:

(1) If p is a proper S-2-absorbing filter of £ containing q, then p/q is an
SQ-2-absorbing filter of £/q;

(2) If p is a proper filter of £ containing q such that (p/q)∩SQ = ∅, then p is
an S-2-absorbing filter of £ if and only if p/q is an SQ-2-absorbing filter of £/q.

Proof. (1) By assumption, there is an element s ∈ S such that for all x, y, z ∈
£, if x ∨ y ∨ z ∈ p, then s ∨ x ∨ y ∈ p or s ∨ x ∨ z ∈ p or s ∨ y ∨ z ∈ p. Let
a∧q, b∧q, c∧q ∈ £/q such that (a∧q)∨Q(b∧q)∨Q(c∧q) = (a∨b∨c)∧q ∈ p/q which
implies a∨b∨c ∈ p by [8, Lemma 4.3]; hence s∨a∨b ∈ p or s∨a∨c ∈ p or s∨b∨c ∈ p.
Therefore (s∧q)∨Q (a∧q)∨Q (b∧q) ∈ p/q or (s∧q)∨Q (a∧q)∨Q (c∧q) ∈ p/q
or (s∧q)∨Q (b∧q)∨Q (c∧q) ∈ p/q. Thus p/q is an SQ-2-absorbing filter of £/q.

(2) One side follows from (1). To see the other side, suppose that p ∩ S ̸=
∅. Then (p/q) ∩ SQ ̸= ∅ which is impossible. Hence S ∩ p = ∅. Since p/q is
an SQ-2-absorbing filter, we conclude that there exists s ∈ S such that for all
x ∧ q, y ∧ q, z ∧ q ∈ p/q with (x ∧ q) ∨Q (y ∧ q) ∨Q (z ∧ q) ∈ p/q, we obtain
(s ∧ q) ∨Q (x ∧ q) ∨Q (y ∧ q) ∈ p/q or (s ∧ q) ∨Q (x ∧ q) ∨Q (z ∧ q) ∈ p/q or
(s ∧ q) ∨Q (y ∧ q) ∨Q (z ∧ q) ∈ p/q. Now, let a, b, c ∈ £ such that a ∨ b ∨ c ∈ p.
Then (a ∧ q) ∨Q (b ∧ q) ∨Q (c ∧ q) ∈ p/q gives (s ∧ q) ∨Q (a ∧ q) ∨Q (b ∧ q) ∈ p/q
or (s∧ q)∨Q (a∧ q)∨Q (c∧ q) ∈ p/q or (s∧ q)∨Q (c∧ q)∨Q (b∧ q) ∈ p/q; hence
s ∨ a ∨ b ∈ p or s ∨ a ∨ c ∈ p or s ∨ b ∨ c ∈ p/q, as needed. □

Classically, in the lattice £ every proper filter is contained in a maximal filter,
its S-version is the following result.

Theorem 4.4. If S is a join closed subset of £, then each proper filter of £
disjoint with S is contained in an S-2-absorbing filter of £.

Proof. Let F be a proper filter of £ with F ∩S = ∅ and put Ω the set of filters
containing F disjoint with S. Since F ∈ Ω, Ω ̸= ∅. Moreover, (Ω,⊆) is a partial
order. It is easy to see that Ω is closed under taking unions of chains and so Ω has
at least one maximal element by Zorn’s Lemma, say p. Since S ∩p = ∅ and 0 ∈ S,
we see that 0 /∈ p and p ̸= £. It remains to show that p is a 2-absorbing filter by
Example 3.1 (2). Now let a ∨ b, a ∨ c, b ∨ c /∈ p; we must show that a ∨ b ∨ c /∈ p
for some elements a, b, c ∈ £. Since a ∨ b /∈ p, we have F ⊆ p ⫋ p ∧ T ({a ∨ b}).
By maximality of p in Ω, we must have S ∩ (p ∧ T ({a ∨ b})) ̸= ∅, and so there
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exist s1 ∈ S, t1 ∈ £ and p1 ∈ p such that s1 = p1 ∧ (a ∨ b ∨ t1). Similarly, there
exist s2, s3 ∈ S, t2, t3 ∈ £ and p2, p3 ∈ p such that s2 = p2 ∧ (a ∨ c ∨ t2) and
s3 = p3 ∧ (b ∨ c ∨ t3). Put u = a ∨ b ∨ t1, v = a ∨ c ∨ t2 and w = b ∨ c ∨ t3. Then
s1 ∨ s2 ∨ s3 = (p1 ∧ u) ∨ (p2 ∧ v) ∨ (p3 ∧ w) =

((p1 ∨ p2) ∧ (p2 ∨ u) ∧ (p1 ∨ v) ∧ (u ∨ v)) ∨ (p3 ∧ w) =

((p1 ∨ p2)∧ (p2 ∨u)∧ (p1 ∨ v)∧ (a∨ b∨ c∨ t1 ∨ t2))∨ (p3 ∧w). Since s1 ∨ s2 ∨ s3 ∈ S
and (p1∨p2)∧ (p2∨u)∧ (p1∨v) ∈ p (as p is a filter), we conclude that a∨ b∨ c /∈ p
since S ∩ p = ∅. Thus p is a 2-absorbing filter of £. □

Definition 4.1. Let S be a join closed subset of £ and p a filter of £ disjoint
with S. Then p is said to be an S-maximal filter if there exists a fixed s ∈ S and
whenever p ⊆ q for some filter q of £, then either s ∨ q ⊆ p or q ∩ S ̸= ∅.

Classically, in the lattice £ every maximal filter is a 2-absorbing filter, its
S-version is the following result.

Theorem 4.5. If S is a join closed subset of £, then every S-maximal filter
of £ is an S-2-absorbing filter.

Proof. Let p be an S-maximal filter. So if there exists a fixed s ∈ S, p ⊆ q
for some filter q of £ implies that s ∨ q ⊆ p or q ∩ S ̸= ∅. Now, we will show that
p is an S-2-absorbing filter. Let x ∨ y ∨ z ∈ p for some x, y, z ∈ £. It is enough to
show that s∨ x∨ y ∈ p or s∨ x∨ z ∈ p or s∨ y ∨ z ∈ p . On the contrary, assume
that s ∨ x ∨ y /∈ p, s ∨ x ∨ z /∈ p and s ∨ y ∨ z /∈ p. This gives p ⫋ p ∧ T ({x ∨ y}),
p ⫋ p∧T ({x∨z}) and p ⫋ p∧T ({y∨z}). Since p is S-maximal, we conclude that
s∨(p∧T ({x∨y})) ⊆ p or (p∧T ({x∨y}))∩S ̸= ∅. If s∨(p∧T ({x∨y})) ⊆ p, then
s∨x∨y = s∨ (1∧ (0∨x∨y)) ∈ p which is impossible. So (p∧T ({x∨y}))∩S ̸= ∅.
Likewise, (p ∧ T ({x ∨ z})) ∩ S ̸= ∅ and (p ∧ T ({y ∨ z})) ∩ S ̸= ∅. Then there exist
s1, s2, s3 ∈ S such that s1 = p1∧(a∨x∨y), s2 = p2∧(b∨x∨z) and s3 = p3∧(c∨y∨z)
for some p1, p2, p3 ∈ p and a, b, c ∈ £. Put u = a∨x∨y, v = b∨x∨z and w = c∨y∨z
(so u ∨ v, u ∨ w, v ∨ w ∈ p). Then s1 ∨ s2 ∨ s3 = (p1 ∧ u) ∨ (p2 ∧ v) ∨ (p3 ∧ w) =
((p1 ∨ p2)∧ (p2 ∨u)∧ (p1 ∨ v)∧ (a∨ b∨ c∨ a∨ b))∨ (p3 ∧w) ∈ p∩S, as p is a filter,
a contradiction. Thus p is an S-2-absorbing filter of £. □

Definition 4.2. Let S be a join closed subset of £. We say that a filter F of
£ is S-finite if s ∨ F ⊆ G ⊆ F for some finitely generated filter G of £ and some
s ∈ S. We say that £ is S-Noetherian if each filter of £ is S-finite.

Proposition 4.4. If S is a join closed subset of £ and F a filter of £ which
is maximal among all non-S-finite filters of £, then F is a 2-absorbing filter of £.

Proof. Since s ∨ £ ⊆ T ({s}) ⊆ £ for every s ∈ S ∩ £, £ is S-finite. If F is
not 2-absorbing, then there exist x, y, z ∈ £ such that x ∨ y, x ∨ z, y ∨ z /∈ F but
x∨y∨z ∈ F . Since F ⫋ F ∧T ({x∨y}), we conclude that F ∧T ({x∨y}) is S-finite
by maximality of F ; hence s ∨ (F ∧ T ({x ∨ y}) ⊆

T ({f1 ∧ (x ∨ y ∨ a1), · · · , fn ∧ (x ∨ y ∨ an)})
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for some s ∈ S, f1, · · · , fn ∈ F and a1, · · · , an ∈ £. Since F ⫋ (F :£ x ∨ y), we
have (F :£ x ∨ y) is S-finite, so t ∨ (F :£ x ∨ y) ⊆ T ({b1, · · · , bk}) for some t ∈ S
and b1, · · · , bn ∈ (F :£ a). Now let f ∈ F (so f ∨ s ∈ s ∨ (F ∧ T ({x ∨ y})). Then
s ∨ f = (s ∨ f) ∨ ∧n

i=1(fi ∧ (x ∨ y ∨ ai)) =

∧n
i=1(s ∨ f ∨ fi) ∧ (∧n

i=1(s ∨ f ∨ x ∨ y ∨ ai)),

so u = ∧n
i=1(s ∨ f ∨ ai) ∈ (F :£ x ∨ y) (so t ∨ u ∈ (F :£ x ∨ y)) which gives

t ∨ u = (t ∨ u) ∨ (∧k
i=1bi) = ∧k

i=1(t ∨ u ∨ bi).

Therefore s ∨ f ∨ t = ∧n
i=1(s ∨ f ∨ fi ∨ t) ∧ (∧n

i=1(s ∨ f ∨ t ∨ ai ∨ x ∨ y)) =

∧n
i=1(s∨ f ∨ fi ∨ t)∧ (x∨ y ∨ t∨u) = ∧n

i=1(s∨ f ∨ fi ∨ t)∧ (∧k
i=1(x∨ y ∨ bi ∨ t∨u)).

So (s∨t)∨F ⊆ T (A) ⊆ F , where A = {f1∨t, · · · , fn∨t, x∨y∨b1, · · · , x∨y∨bk} ⊆ F ;
hence F is S-finite, a contradiction. Thus F is a 2-absorbing filter of £. □

Compare the next theorem with Proposition 4 in [1].

Theorem 4.6. If S is a join closed subset of £, then £ is S-Noetherian if and
only if every 2-absorbing filter of £ (disjoint from S) is S-finite.

Proof. Suppose that for each 2-absorbing filter of £ (disjoint from S) is S-
finite. Assume that £ is not S-Noetherian and look for a contradiction. Then
the set Ω of all non-S-finite filters of £ is inductively ordered under inclusion. By
Zorn’s Lemma, choose p maximal in Ω. Then Proposition 4.4 implies that p is a
2-absorbing filter. If p∩S ̸= ∅, then s∨p ⊆ T ({s}) ⊆ p for every s ∈ p∩S gives p
is S-finite, a contradiction. Thus p ∩ S = ∅. Now, by the hypothesis, p is S-finite
which is impossible since p ∈ Ω. Thus £ is S-Noetherian. The other implication
is clear. □

We obtain the following S-version of Cohen’s Theorem [4].

Theorem 4.7. Let S be a join closed subset of £. The following assertions are
equivalent:

(1) £ is S-Noetherian;
(2) Every S-2-absorbing filter of £ is S-finite;
(3) Every 2-absorbing filter of £ is S-finite.

Proof. The implication (1) ⇒ (2) is clear. To see the implication (2) ⇒ (3),
let q be a 2-absorbing filter of £. If q ∩ S ̸= ∅, then s ∨ q ⊆ T ({s}) ⊆ q for every
s ∈ q∩S gives q is S-finite. If q∩S = ∅, then q is an S-2-absorbing filter of £; so
by (2), q is S-finite.

(3) ⇒ (1) Follows from Theorem 4.6. □

Proposition 4.5. Let £ = £1×£2 be a decomposable lattice and S = S1×S2,
where Si is a join closed subset of £i. Suppose that p = p1 × p2 is a filter of £.
The following statements are equivalent:

(1) p is an S-2-absorbing filter of £;
(2) p1 is an S1-2-absorbing filter of £1 and p2 ∩ S2 ̸= ∅ or p2 is an S2-2-

absorbing filter of £2 and p1 ∩ S1 ̸= ∅ or p1 is an S1-prime filter of £1 and p2 is
an S2-prime filter of £2.
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Proof. (1) ⇒ (2) Suppose that p is an S-2-absorbing filter of £. Then we
keep in mind that there exists a fixed s = (s1, s2) ∈ S that satisfies the S-2-
absorbing condition. Since p∩S = ∅, we have either p1 ∩S1 = ∅ or p2 ∩S2 = ∅. If
p1∩S1 ̸= ∅, we will show that p2 is an S2-2-absorbing filter of £2. Let x∨y∨z ∈ p2

for some x, y, z ∈ £2. Then (1, x) ∨c (1, y) ∨c (1, z) = (1, x ∨ y ∨ z) ∈ p gives
s ∨c (1, x) ∨c (1, y) = (1, s2 ∨ x ∨ y) ∈ p or s ∨c (1, x) ∨c (1, z) = (1, s2 ∨ x ∨ z) ∈ p
or s ∨c (1, y) ∨c (1, z) = (1, s2 ∨ y ∨ z) ∈ p. This shows that s2 ∨ x ∨ y ∈ p2 or
s2 ∨ x ∨ z ∈ p2 or s2 ∨ y ∨ z ∈ p2. Hence, p2 is an S2-2-absorbing filter of £2.
Similarly, if S2 ∩ p2 ̸= ∅, then p1 is an S1-2-absorbing filter of £1. Now assume
that S1 ∩p1 = ∅ and S2 ∩p2 = ∅. We will show that p1 is an S1-prime filter of £1

and p2 is an S2-prime filter of £2. Suppose that p1 is not an S1-prime filter of £1.
Then there exist a, b ∈ £1 such that a∨b ∈ p1 but s1∨a /∈ p1 and s1∨b /∈ p1. Since
S2∩p2 = ∅, we conclude that s2 /∈ p2. Then (a, 0)∨c (0, 1)∨c (b, s2) = (a∨b, 1) ∈ p
gives s∨c (a, 0)∨c (0, 1) = (s1∨a, 1) ∈ p or s∨c (a, 0)∨c (b, s2) = (s1∨a∨ b, s2) ∈ p
or s ∨c (0, 1) ∨c (b, s2) = (s1 ∨ b, 1) ∈ p; so s1 ∨ a ∈ p1 or s2 ∈ p2 or s1 ∨ b ∈ p
which is a contradiction. Therefor, p1 is an S1-prime filter of £1. Similarly, p2 is
an S2-prime filter of £2.

(2) ⇒ (1) Let p1 ∩ S1 ̸= ∅ and p2 be an S2-2-absorbing filter of £2. At first,
note that p ∩ S = ∅. Let (a, x) ∨c (b, y) ∨c (c, z) = (a ∨ b ∨ c, x ∨ y ∨ z) ∈ p for
some (a, x), (b, y), (c, z) ∈ £. Since p1 ∩ S1 ̸= ∅, there exists s1 ∈ S1 such that
s1 ∨ u ∈ p1 for all u ∈ £1. Also, there exists s2 ∈ S2 satisfying p2 to be an S2-2-
absorbing filter of £2. Now, put s = (s1, s2) ∈ S. Since p2 is an S2-2-absorbing
filter and x ∨ y ∨ z ∈ p2, we conclude that s2 ∨ x ∨ y ∈ p2 or s2 ∨ x ∨ z ∈ p2 or
s2 ∨ y ∨ z ∈ p2. This shows that s ∨c (a, x) ∨c (b, y) ∈ p or s ∨c (a, x) ∨c (c, z) ∈ p
or s ∨c (c, z) ∨c (b, y) ∈ p. Hence, p is an S-2-absorbing filter of £. If p2 ∩ S2 ̸= ∅
and p1 is an S1-2-absorbing filter of £1, similar argument shows that p is an S-2-
absorbing filter. Now, suppose that for each i = 1, 2, pi is an Si-prime filter of £i.
Let (a, x)∨c (b, y)∨c (c, z) = (a∨b∨c, x∨y∨z) ∈ p for some (a, x), (b, y), (c, z) ∈ £.
since p1 is an S1-prime filter and a ∨ b ∨ c ∈ p1, there exists a fixed s1 ∈ S1 such
that s1 ∨ a ∈ p1 or s1 ∨ b ∈ p1 or s1 ∨ c ∈ p1. Similarly, there exists s2 ∈ S2

such that s2 ∨ x ∈ p2 or s2 ∨ y ∈ p2 or s2 ∨ z ∈ p2. Put s = (s1, s2) ∈ S.
Without loss of generality, we may assume that s1 ∨ a ∈ p1 and s2 ∨ z ∈ p2. Then
s ∨c (a, x) ∨c (c, z) ∈ p. Therefore, p is an S-2-absorbing filter of £. □

Corollary 4.1. Let £ = £1 ×£2 be a decomposable lattice and S = S1 ×S2,
where Si is a join closed subset of £i. Suppose that p = p1 × p2 is a filter of £.
The following statements are equivalent:

(1) p is an S-prime filter of £;
(2) p1 is an S1-prime filter of £1 and p2 ∩ S2 ̸= ∅ or p2 is an S2-prime filter

of £2 and p1 ∩ S1 ̸= ∅.

Proof. This is a direct consequence of Proposition 3.1 (1) and Proposition
4.5. □
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Corollary 4.2. Let £ = £1 × · · · × £n be a decomposable lattice and S =
S1×· · ·×Sn, where Si is a join closed subset of £i. Suppose that p = p1×· · ·×pn

is a filter of £. The following statements are equivalent:
(1) p is an S-prime filter of £;
(2) pi is an Si-prime filter of £i for some i ∈ {1, · · · , n} and pj ∩ Sj ̸= ∅ for

all j ∈ {1, · · · , n}∖ {i}.

Proof. We use induction on n. For n = 1, the result is true. If n = 2, then
(1) and (2) are equivalent by Corollary 4.1. Assume that (1) and (2) are equivalent
when k < n. Set p′ = p1×· · ·×pn−1, S

′ = S1×· · ·×Sn−1 and £′ = £1×· · ·×£n−1.
Then by Corollary 4.1, p = p′ × pn is an S-prime filter of £ if and only if p′ is an
S′-prime filter of £′ and pn ∩ Sn ̸= ∅ or p′ ∩ S′ ̸= ∅ and pn is a Sn-prime filter of
£n. Now the assertion follows from the induction hypothesis. □

Compare the next theorem with Theorem 3 in [13].

Theorem 4.8. Let £ = £1 × · · · × £n be a decomposable lattice and S =
S1×· · ·×Sn, where Si is a join closed subset of £i. Suppose that p = p1×· · ·×pn

is a filter of £. The following statements are equivalent:
(1) p is an S-2-absorbing filter of £;
(2) pk is an Sk-2-absorbing filter of £k for some k ∈ {1, · · · , n} and pj∩Sj ̸= ∅

for all j ∈ {1, · · · , n} ∖ {k} or pk1 is an Sk1-prime filter of £k1 and pk2 is an
Sk2

-prime filter of £k1
for some 1 ⩽ k1 ̸= k2 ⩽ n and pj ∩ Sj ̸= ∅ for each

j ∈ {1, · · · , n}∖ {k1, k2}.

Proof. We use induction on n. For n = 1, the result is true. If n = 2,
then (1) and (2) are equivalent by Proposition 4.5. Suppose that (1) and (2) are
equivalent when k < n. Set p′ = p1 × · · · × pn−1, S′ = S1 × · · · × Sn−1 and
£′ = £1 × · · · × £n−1. Then by Proposition 4.3, p = p′ × pn is an S-2-absorbing
filter of £ if and only if p′ ∩ S′ ̸= ∅ and pn is a Sn-2-absorbing filter of £n or p′

is an S′-2-absorbing filter of £′ and pn ∩ Sn ̸= ∅ or p′ is an S′-prime filter of £′

and pn is an Sn-prime filter of £n. Now the assertion follows from the induction
hypothesis and Corollary 4.2. □
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