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ON S-2-ABSORBING FILTERS OF LATTICES

Shahabaddin Ebrahimi Atani

ABSTRACT. Let £ be a bounded distributive lattice and S a join closed subset
of £. Following the concept of S-2-absorbing submodules, we define S-2-
absorbing filters of £. Let p be a filter of £ disjoint with S. We say that p is
an S-2-absorbing filter of £ if there is a fixed s € S such that for all z,y,z € £
ifzxVyvVzep,thensvVzVyeporsVyVzeporsVaVzep. Wewil
make an intensive investigation of the basic properties and possible structures
of these filters.

1. Introduction

All lattices considered in this paper are assumed to have a least element denoted
by 0 and a greatest element denoted by 1, in other words they are bounded. Our
objective in this paper is to extend the notion of S-2-absorbing property in modules
theory to S-2-absorbing property in the lattices, and to investigate the relations
between S-2-absorbing filters and 2-absorbing filters. Indeed, we are interested
in investigating S-2-absorbing filters to use other notions of S-2-absorbing and
associate which exist in the literature as laid forth in [11, 13].

The notion of prime ideals has a significant place in the theory of rings, and
it is used to characterize certain classes of rings. For years, there have been many
studies and generalizations on this issue. See, for example, [3, 6, 9, 10, 11, 12, 13].
Badawi generalized the concept of prime ideals in [3]. We recall from [3] that a
proper ideal I of a commutative ring R is said to be a 2-absorbing ideal if whenever
abc € I for a,b,c € R, then ab € I or ac € I or be € T (also see [6]). In 2019,
Hamed and Malek [10] introduced the notion of an S-prime ideal, i.e. let S C R be
a multiplicative set and I an ideal of R disjoint from S. We say that I is S-prime
if there exists an s € S such that for all a,b € R with ab € I, we have sa € I or
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sb € I (also see [12]). In 2020, Ulucak, Tekir and Koc [13] introduced the notion
of an S-2-absorbing submodules, i.e. let S C R be a multiplicative set and P a
submodule of an R-module M with SN (P :g M) = 0. We say that P is an
S-2-absorbing submodule if there exists an element s € S and whenever abm € P
for some a,b € R and m € M, then sab € (P :p M) or sam € P or sbm € P.
In 2021, Naji [11] introduced the notion of an S-2-absorbing primary submodules,
i.e. let S C R be a multiplicative set and P a submodule of an R-module M with
SN (P:g M)={(. We say that P is an S-2-absorbing primary submodule if there
exists an element s € S and whenever abm € P for some a,b € R and m € M, then
sab € \/(P :g M) or sam € P or sbm € P.

Let £ be a bounded distributive lattice. We say that a subset S C £ is join
closed if 0 € S and s1 V sg € S for all 51,50 € S (if p is a prime filter of £,
then £ \ p is a join closed subset of £). Among many results in this paper,
the first, preliminaries section contains elementary observations needed later on.
Section 3 is dedicated to the investigate the some basic properties of S-2-absorbing
filters. At first, we give the definition of S-2-absorbing filters (Definition 3.1) and
provide an example (Example 3.2) of an S-2-absorbing filter of £ that is not a
2-absorbing filter. It is shown (Theorem 3.1) that if S is a join closed subset of £,
then the intersection of two S-prime filters is an S-2-absorbing filter. Also, we give
three other characterizations of S-2-absorbing filters (see Lemma 3.1, Lemma 3.2,
Proposition 3.2 and Theorem 3.2). We continue in Section 4 by investigation the
stability of S-2-absorbing filters in various lattice-theoretic constructions. Indeed,
we investigate the behavior of S-2-absorbing filters under homomorphism, in factor
lattices, S-Noetherian lattices, and in cartesian products of lattices (see Theorem
4.2, Theorem 4.3, Theorem 4.4, Theorem 4.5, Theorem 4.7, and Theorem 4.8).

2. Preliminaries

Let us recall some notions and notations. By a lattice we mean a poset (£, <)
in which every couple elements z,y has a g.l.b. (called the meet of x and y, and
written 2 Ay) and a Lu.b. (called the join of x and y, and written x Vy). A lattice
£ is complete when each of its subsets X has a l.u.b. and a g.l.b. in £. Setting
X = £, we see that any non-void complete lattice contains a least element 0 and
greatest element 1 (in this case, we say that £ is a lattice with 0 and 1). A lattice
£ is called a distributive lattice if (a Vb) Ac=(aAc)V (bAc) for all a,b,cin £
(equivalently, £ is distributive if (a Ab) Ve = (aVc)A(bVc) for all a,b,c in £).
A non-empty subset F' of a lattice £ is called a filter, if fora € F, b€ £, a < b
implies b € F, and x Ay € F for all z,y € F (so if £ is a lattice with 1, then 1 € F'
and {1} is a filter of £). A proper filter F' of £ is called prime if z Vy € F, then
x € Forye F. A proper filter F' of £ is said to be mazimal if G is a filter in £
with F g G, then G = £. The intersection of all filters containing a given subset
A of £ is the filter generated by it, is denoted by T'(A). A filter F is called finitely
generated if there is a finite subset A of F' such that ' = T(A). A proper filter F
of a lattice £ is called a 2-absorbing filter if whenever a,b,c € £ and avVbVc e F,
thenavbe ForaVce ForbVcee F. Let p be afilter of £ and S a join closed



ON S-2-ABSORBING FILTERS OF LATTICES 117

subset of £ disjoint with S. We say that p is an S-prime filter of £ if there is an
element s € S such that for all x,y € £ifxVy e p,thenxzVseporyVsenp.

A lattice £ with 1 is called £-domain if aVb =1 (a,b € £), then a = 1 or
b=1 (so £ is £-domain if and only if {1} is a prime filter of £). If z € £, then
a complement of x in £ is an element y € £ such that z Vy =1 and x Ay = 0.
The lattice £ is complemented if every element of £ has a complement in £. If £
and £’ are lattices, then a lattice homomorphism f : £ — £’ is a map from £ to
£ satistying f(zVy) = f(z)V f(y) and f(z Ay) = f(z) A f(y) for x,y € £. First
we need the following lemmas proved in [5, 6, 7, 8, 9].

LEMMA 2.1. Let £ be a lattice.

(1) A non-empty subset F' of £ is a filter of £ if and only if vV z € F and
x ANy €F forallx,y € F, z € £. Moreover, sincex =z V (xANy), y=yV (xAy)
and F is a filter, x Ny € F gives x,y € I for all z,y € £.

(2) Let A be an arbitrary non-empty subset of £. Then

TA)={xe£: aghaaN---Na, <z for somea; € A (1<i<n)}

Moreover, if F is a filter and A is a subset of £ with A C F, then T(A) C F,
T(F)=F and T(T(A)) =T(A)
(3) If {Fi}ica is a chain of filters of £, then |J;c o Fi is a filter of £.

LEMMA 2.2. Let F,G be filters of £ and x € £. The following hold:

(1) FVG={aVb:ace F,be G} andxVF ={aVy:y € F} are filters of £
with FVG=FNQG.

(2) If £ is distributive, then FAG = {aAb:a € F,b € G} is a filter of £ with
FGCFAG

(8) If £ is distributive, F,G are filters of £ andy € £, then (G :px F)={x €
£:2VFCGand (F:p T{y})=(F:ry)={a€ £:aVyéeEF} are filters of
£.

(4) If £ is distributive, G, Fy, Fy are filters of £, then GV (Fy A Fy) = (G V
Fl)/\(G\/FQ).

Assume that (£1,<1), (£2,<2), -+, (£n, <p) are lattices (n > 2) and let £ =
£1 X £9 x - x £,. We set up a partial order <. on £ as follows: for each
x = (x1,22,  ,&n), ¥ = (Y1,Y2, " ,Yn) € £, we write z <. y if and only if
x; <; y; for each i € {1,2,--- ,n}. The following notation below will be kept in
this paper: It is straightforward to check that (£,<.) is a lattice with z V. y =
(1 Vyr,xaVya, -+ 2y Vyp) and z Acy = (1 Ay1, -, Tn AYyn). In this case, we
say that £ is a decomposable lattice.

Quotient lattices are determined by equivalence relations rather than by ideals
as in the ring case. If F' is a filter of a lattice (£, <), we define a relation on £,
given by x ~ y if and only if there exist a,b € F satisfying x Aa = y Ab. Then ~ is
an equivalence relation on £, and we denote the equivalence class of a by a A F' and
these collection of all equivalence classes by £/F. We set up a partial order <¢ on
£/F as follows: for each a ANF,bAF € £/F, we write aAF <g bA F if and only if
a < b. The following notation below will be used in this paper: It is straightforward
to check that (£/F,<q) is a lattice with (a A F) Vo (b A F) = (aVb) A F and
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(aANF)Ng (DAF) = (aAb)AF for all elements a A F,b A F € £/F. Note that
eANF=F=1AF ifand only if e € F (see [8, Remark 4.2 and Lemma 4.3]).

3. Characterization of S-2-absorbing filters

In this section, we collect some basic properties concerning S-2-absorbing fil-
ters. We remind the reader with the following definition.

DEFINITION 3.1. Let p be a filter of £ and S a join closed subset of £. A filter
p is said to be S-2-absorbing if pNS = 0 and there exists a fized s € S such that
for any x,y,z € £ withxVyVz € p, then sVexVy EporsVaVzEpor
sVyVzep.

EXAMPLE 3.1. (1) If S = {0}, then the 2-absorbing and the S-2-absorbing
filters of £ are the same.

(2) If p is a 2-absorbing filter of £ disjoint with S, then p is an S-2-absorbing
filter.

(8) Letf£ = {0,a,b,¢,1} be a lattice with the relations 0 < a < ¢ < 1, 0 <
b<c<1l,avVb=candaNb=0. An inspection will show that the nontrivial
filters (i.e. different from £ and {1}) of £ are p1 = {1,¢}, p2 = {1,¢,a} and
ps = {1,¢,b}. Set S ={0,a}. Then S is a join closed subset of £ with SNpy = 0.
Since paNps = p1, we conclude that p1 is a 2-absorbing filter by [6, Theorem 2.8];
hence p1 is S-2-absorbing by (2).

EXAMPLE 3.2. Let £1 = {0,a,b,¢,d,1} be a lattice with the relations 0 < a <
d<1,0<b<<d<l,0<cec<<landanb=aNc=dNc=cAb=0.
Suppose that £ = £1 x £1, p = {b,d,1} x {1} and S = {0,¢} x {0,¢}; so p
is a filter of £ with pNS = (. Then p is an S-2-absorbing filter. Indeed, let
(a1,b1) Ve (ag2,b2) V. (as,bs) € p for some (a1,b1),(az,be2), (as,b3) € £. Then
an inspection will show that (¢,c) € S and (a1,b1) V¢ (az,b2) Ve (c,c) € p or
(a1,b1) Ve (as,bs) Ve (¢,¢) € p or (as,b3) Ve (az,b2) Ve (¢,¢) € p, as needed.

On the other hand, p is not a 2-absorbing filter since (b,0) V (¢,d) V (0,¢) =
(1,1) € p but neither (b,0) V (¢,d) = (1,d) € p nor (b,0) V (0,¢) = (b,c) € p nor
(¢,d) V (0,¢) = (c,1) € p. Thus an S-2-absorbing filter need not be a 2-absorbing
filter.

EXAMPLE 3.3. Let S C S be join closed subsets of £ and p a filter of £
disjoint with S. It is clear that if p is an S’'-2-absorbing filter of £, then p is an
S-2-absorbing filter. However, the converse is not true in general. Indeed, assume
that £ is the lattice as in Example 3.2 and let S" = {(0,0)} € S = {0,c} x {0,c}.
Then p = {b,d,1} x {1} is an S-2-absorbing filter of £ but not an S’-2-absorbing
filter of £.

PROPOSITION 3.1. Let S, S’ be join closed subsets of £. The following hold:

(1) Every S-prime filter is an S-2-absorbing filter;

(2) If 8" C S such that for any s € S, there exists t € S satisfying sVt € 5.
If p is an S-2-absorbing filter of £, then p is an S’-2-absorbing filter of £.
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PRrROOF. (1) It is clear.

(2) Let x,y,2z € £ such that x Vy V z € p. Then there exists s € S such that
sVeVyeporsVaezVzeporsVyVz e p. By the hypothesis, there is t € S such
that sVt €S and then sVtVazVyeporsVitvaVzeporsVtVyVz e p, as
p is a filter. This shows that p is S’-2-absorbing. (]

Compare the next theorem with Proposition 2 in [13].

THEOREM 3.1. If S is a join closed subset of £, then the intersection of two
S-prime filters is an S-2-absorbing filter.

PROOF. Let py1, p2 be two S-prime filters of £ and p = p; Np2. Suppose that
aVbVc e p for some a,b,c € £. Since p; is an S-prime filter and a VbV ¢ € p1,
there exists t; € S such that ¢t;Va € pyort; VbVe € py. If t1 VbVe € py, then pq
is an S-prime gives there exists tj € S such that either ] Vb € py or t] Vi1 Ve € p1.
Set s =t; V) € S. Then either sy Vb € p1 or s1 V¢ € pp. Similarly, since po
is an S-prime filter and a V bV ¢ € pa, we conclude that there exists sy € S such
that so Va € pg or s Vb € pa or s3 Ve € pa. Without loss of generality, we can
assume that s;1 Va € py and s3 V¢ € pa. Now we put s = s1 V so. This shows that
sVaVcéepand so pis an S-2-absorbing filter of £. O

LEMMA 3.1. Let p be a filter of £ and S a join closed subset of £ disjoint with
p- The following assertions are equivalent:

(1) p is an S-2-absorbing filter of £;

(2) There exists an s € S such that whenever (aVb)V F C p for some filter F
of £ and a,b € £ implies either sVaVbep or (sVb)VF Cp or(sVa)VF Cp.

PRrOOF. (1) = (2) By the hypothesis, there exists an s € S such that zVyVz €
p for some z,y,z € £ implies sVzVy EporsVaVzeporsVyVzeEp.
Let (a Vb)V F C p for some a,b € £ and a filter F of £. Let sVaVb¢ p and
(sVa)VF ¢ p. So there exists f € F such that sVaV f ¢ p. SinceaVbV fep
and p is S-2-absorbing, we get s VbV f € p. We show that (s Vb))V F C p. Let
e € F. Then (eA f)VaVb € p and hence either sV (fAe)Vb e por s(fAe)Va € p.
Ifsv(fAae)yVb=(svVbV f)A(sVbVe)€p,then sVbVe e p by Lemma 2.1.
Ifsv(fAe)Va=(sVaV f)A(sVaVe)€EpgivessVaV f € p by Lemma 2.1
which is a contradiction; so s VbV e € p. This shows that (sVb)V F C p.

(2) = (1) IfaVvbVcep for some a,b,c € £, then (aVb)VT({c}) C p gives
there exists an s € S such that either sVavbeporsvbVee (svb)VT({c}) Cp
orsVaVce (sVa)VT({c}) C p by (2), as needed. O

LEMMA 3.2. Let p be a filter of £ and S a join closed subset of £ disjoint with
p- The following assertions are equivalent:

(1) p is an S-2-absorbing filter of £;

(2) There exists an s € S such that aV (FV G) C p for some filters F,G of £
and a € £, then either (sVa)VF Cp or(sVa)VGCporsV(FVG)Cp.

PROOF. (1) = (2) Let p be an S-2-absorbing filter of £. Then we assume that
s € S satisfies S-2-absorbing condition. Let a V (F'V G) C p for some filters F, G
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of £ and a € £ and suppose that (s Va)VFEF ¢ pand (sVa)VG ¢ p. We want
to show that s V(FVG) C p. Let f € F and g € G. There exists b € F \ p
such that s Va Vb ¢ p. Since (a Vb) VG C p, we conclude that (s Vb) VG C p
by Lemma 3.1 and so s V (F \ p) VG C p. Similarly, there exists ¢ € G \ p
such that (sVe¢)VF Cpand sV (G~p)VF Cp. Thus we have sV bV c € p,
sVbvgepand sV fVvecep. AsbAf e Fand gAcé€ G, we conclude that
bANfY)V(gAc)Va € p. Hence, sV(OANf)VaeporsV(gAc)Va€por
sVIOANfIV(gAe) ep. IfsV(BAf)Va=(sVaVb)A(sVaV f) € p, then
sVaVb e p by Lemma 2.1, a contradiction. Similarly, sV (cAg)Va ¢ p. So
sVIOAfIV(gAe)=(sVeV I )A(sVeVb) A(sVgV f)N(sVgVb)ep. This
shows that sV f V g € p by Lemma 2.1. Therefore, sV (FVG) C P.

(2)= 1) IfaVbVcep for some a,b,c € £, then aV (T({b}) VT ({c})) Cp
gives there exists an s € S such that sVaVvbe (sVa)VT({b}) CporsVaVce
(sVa)VT({c}) Cporsvbvece sV(T(H{b})VT({c})) C p by (2), as required. O

PROPOSITION 3.2. Let p be a filter of £ and S a join closed subset of £ disjoint
with p. The following assertions are equivalent:

(1) p is an S-2-absorbing filter of £;

(2) There ezists a fivred s € S such that whenever FVGV K C p for some filters
F,G,K of £, then either sV (FVG)CporsV(FVK)CporsVv(GVEK)Cp.

PROOF. (1) = (2) Let p be an S-2-absorbing filter of £ and assume that
s € S satisfies S-2-absorbing condition. Suppose that FFV GV K C p for some
filters F,G,K of £ and sV (FV G) € p. Then for each z € K, 2V (FVG) Cp
gives either (sVa)VEF Cpor (sVa)V G Cp by Lemma 3.2. If for every z € K,
(sVz)VF Cp,then sV (FVK)C p. Similarly, if for all z € K, (sV ) VG C p,
we have sV (G V K) C p. We are going to show that either sV (F'V K) C p or
sV(GVK) C p. Assume on the contrary, that sV (FVK) € p and sV(GVK) € p.
So there exist k1, ko € K such that (sVki)VF ¢ p and (sVk2)VG € p. Therefore,
(sVke)VF C pand (sVk;)VG C p. Since (k1 Ak2)V(FVG) C p, we conclude that
sV (ki ANke)VE CporsV (ki Aky)VG C p by Lemma 3.2. If sV (ky Aka) VF C p,
then for all f € F, sV (k1 Ak2)V f = (sVk1V f)A(sVkaV f) € p which implies that
sVkiV f € pby Lemma 2.1; hence (sV k1) V F C p which is impossible. Similarly,
by sV (k1 Ake) VG C p, we get a contradiction. Therefore, sV (F'V K) C p or
sV(GVK)Chp.

(2) = (1) IfaVbVe € p for some a, b, c € £, then T({a})V(T({b})VT({c})) Cp
gives there exists an s € S such that sVaVvb e sV (T({a}) vVT{b}) C p or
sVavecesV(THa}))vVT({c})) CporsvbVveesV (THb})VT({c})) Cp by
(2), as required. O

We next give three other characterizations of S-2-absorbing filters. Compare
the next theorem with Theorem 1 in [13].

THEOREM 3.2. Let p be a filter of £ and S a join closed subset of £ disjoint
with p. The following assertions are equivalent:
(1) p is an S-2-absorbing filter of £;
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(2) There exists an s € S such that whenever (aVb)V F C p for some filter F
of £ and a,b € £ implies either sVaVbep or (sVO)VF Cpor(sVa)VF Cp.
(3) (2) There exists an s € S such that aV (F'V G) C p for some filters F,G
of £ and a € £, then either (sVa)VEF Cp or(sVa)VGCp orsV(FVG)Cp.
(4) There exists an s € S such that whenever F'V GV K C p for some filters
F,G,K of £, then either sV (FVG)CporsV(FVK)CporsV(GVEK)Cp.

ProoF. This is a direct consequence Lemma 3.1, Lemma 3.2 and Proposition
3.2. O

4. Further results

We continue in this section by investigation the stability of S-2-absorbing filters
in various lattice-theoretic constructions.

PROPOSITION 4.1. Let p be a filter of £, e € £ and S a join closed subset of
£ with (p :g e)NS = 0. If p is an S-2-absorbing filter of £, then (p :¢ €) is a
S-2-absorbing filter of £.

PROOF. Let P be an S-2-absorbing filter of £. Suppose that s € S satisfies
the S-2-absorbing condition. Let a VbV ¢ € (p :z e) for some a,b,c € £. Set
F =T{a}), G = T{b}) and K = T({cVe}). Then FVv GV K C p gives
sVavbesV(FVG)Cp(sosVavbVeep)orsVaVeVeesV(FVK)Cp
or sVbVeVe € sV(GVK)Cp by Theorem 3.10; so sVaVb € (p:g €) or
sVaVece (p:ge)orsVbVee (p:ge). Hence, (p:g €)is an S-2-absorbing filter
of £. O

Compare the next theorem with Theorem 4 in [13].

THEOREM 4.1. Let p be a filter of £ and S a join closed subset of £ with
pNS =0. The following assertions are equivalent:

(1) p is an S-2-absorbing filter of £;

(2) (p :£ s) is a 2-absorbing filter for some s € S.

PROOF. (1) = (2) Let P be an S-2-absorbing filter of £. Then we keep in
mind that there exists a fixed s € S that satisfies the S-2-absorbing condition.
Since pN S = 0, we conclude that (p :x s)NS =0. Let zVyVz e (p:gs) for
some x,y,z € £. Then by (1), sVzVyeporsVaV(sVz)=sVzVzEpor
sVyV(sVz)=sVyVzepwhichgiveszVye (p:gs)orzVze(p:gs)or
yVz e (p:es). Hence, (p:g s) is a 2-absorbing filter of £.

(2) = (1) Let (p :£ s) be a 2-absorbing filter for some s € Sand zVyVz € p
(so sVaVyVz € p) for some x,y, z € £ which implies that zVyVz € (p :¢ s). Then
(p :£ ) is 2-absorbing gives x Vy € (p:g s)orzVz e (p:gs)oryVz e (p:g s),
as required. O

PROPOSITION 4.2. Let p be a filter of £ and S a join closed subset of £ disjoint
with p. The following hold:

(1) Let q be a filter of £ such that NS # 0. If p is an S-2-absorbing filter,
then p V q is an S-2-absorbing filter of £;
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(2) Let £ C £" an extension of lattices. If p is an S-2-absorbing filter of £’,
then pV £ is an S-2-absorbing filter of £;

PROOF. (1) Clearly, SN(pVq)=0. Lett€ SNqand zVyVzepVqClp
for some x,y,z € £. Then there is an element s € S such that sV Vy € p or
sVyVzeporsVaVzep which givessVtvVaVyepVqorsVtVyVzepVq
orsVtVzVzepVq, where sVt e S, ie. (1) holds.

(2) Since £ NS # 0, then (1) shows that (2) holds. O

Let £ and £’ be two lattices and f : £ — £’ be a lattice homomorphism such
that f(1) = 1. Then it is easy to see that Ker(f) = {x € £ : f(z) = 1} is a filter
of £. Compare the next theorem with Proposition 4 in [13].

THEOREM 4.2. Let f: £ — £’ be a lattice homomorphism such that f(1) =1
and f(a) # 1 for all1 # a € £ and S is a join closed subset of £. The following
hold:

(1) f(S) is a join closed subset of £' and if q is an f(S)-2-absorbing filter of
L', then p = f~1(q) is an S-2-absorbing filter of £.

(2) If £ is a complemented lattice, [ is onto and p is an S-2-absorbing filter of
£ containing Ker(f) with f(S)N f(p) =0, then f(p) is an f(S)-2-absorbing filter
of £'.

PRrROOF. (1) Clearly, f(S) is a join closed subset of £’ and p is a filter of £.
By assumption, there exists s € S such that for all z,y,z € £' if zVyV z € q, then
f(s)vzvyeqor f(s)VyVzeqor f(s) Va Vz € q. It is clear that pn S = 0.
Let a,b,c € £ such that aVbVe € p;so f(aVbVe) = f(a)V f(b)V f(c) € q which
gives f(s)V f(a)V f(b) = f(sVaVvd) eqor f(s)V f(b)V f(c) = f(sVbVc) €qor
f(s)Vf(a)V f(e) = f(sVaVe) € q. This implies that sVaVbeporsVaVceEp
or sVbVcé€ q, as required.

(2) It is easy to see that f(p) is a filter of £’. Suppose that x VyV z € f(p)
for some z,y, z € £’. Then there exist a,b,c € £ such that x = f(a), y = f(b) and
z = f(c). Therefore f(aVbVec)= f(a)V f(b)V f(c) € f(p);so flaVvbVec)= f(d)
for some d € p. Since £ is complemented, there exists e € £ such that eV d =1
and dAe=0. Setv=aVbVec(sovVdEep,aspis a filter). Then f(vVe)=
f)yv fle) = f(d)V f(e) = f(1) = 1; hence vV e € Ker(f) C p. Now p is a
filter gives (v V d) A (vVe) = v € p. Therefore there is an element s € S such
that sVavVbeporsVaVeceporsVbVeep,andso f(s)VaVy € f(p) or
f(s)vavze f(p')or f(s)VyVz e p. Hence f(p) is a f(S)-2-absorbing filter of
£ O

An element x of £ is called identity join of a lattice £, if there exists 1 #y € £
such that x V y = 1. The set of all identity joins of a lattice £ is denoted by I(.£).
Let p be a filter of £ and S a join closed subset of £ disjoint with p. It is clear that
Sg ={sAp:s e S}isajoin closed subset of £/p. The next result determines
the class of lattices for which their S-2-absorbing filters and 2-absorbing filters are
the same.
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PROPOSITION 4.3. Let p be a filter of £ and S a join closed subset of £
disjoint with p. If I(£/p) N Sg = 0, then the 2-absorbing and the S-2-absorbing
filters coincide.

Proor. It suffices to show that p = (p :¢ s) for all s € S by Theorem 4.1.
Since the inclusion P C (P :¢ s) is clear, we will prove the reverse inclusion. Let
seSandz € (p:gs). ThensVz € pgives (sAp)Vg(zAp) = (sVax)Ap=1Ap
by [8, Lemma 4.3]. Since I(f) N Sg = 0, we conclude that z Ap = 1 A p; so
x A pr = 1A py = ps for some p1,pe € p. This implies that € p by Lemma 2.1,
as needed. ]

THEOREM 4.3. Let q be a filter of £ and S a join closed subset of £ with
SNnq=0. The following hold:

(1) If p is a proper S-2-absorbing filter of £ containing q, then p/q is an
Sq-2-absorbing filter of £/q;

(2) If p is a proper filter of £ containing q such that (p/q)NSq =0, then p is
an S-2-absorbing filter of £ if and only if p/q is an Sg-2-absorbing filter of £/q.

PRroOOF. (1) By assumption, there is an element s € S such that for all x,y, z €
£LyifxVvyVzep,then sVeVy eporsvVaVzeporsVyVzep. Let
ang,bAq, cAq € £/qsuch that (aAq)Vg(bAQ)Vg(ecAq) = (aVbVe)Aq € p/q which
implies aVbVe € p by [8, Lemma 4.3]; hence sVaVb € p or sVaVe € p or sVbVe € p.
Therefore (s Aq) Vg (aAQ) Vo (bAQ) € p/aor (sAq) Vg (aAd) Vg (cAQ) € p/g
or (sAq)Vg (bAQ) Vg (cAQ) € p/q. Thus p/q is an Sg-2-absorbing filter of £/q.

(2) One side follows from (1). To see the other side, suppose that p NS #
. Then (p/q) N Sq # 0 which is impossible. Hence SN p = (. Since p/q is
an Sg-2-absorbing filter, we conclude that there exists s € S such that for all
rAq,yANq,zAq € p/q with (z Aq) Vg (yAa) Vo (2 Aq) € p/q, we obtain
(sna) Vo (Aa) Vg (yAa) € p/gor (sAa) Vg (zAa) Ve (2/Aq) € p/qor
(shNa) Vg (yAdq) Vo (A Q) € p/g. Now, let a,b,¢c € £ such that a VbV c € p.
Then (aAq) Vg (bAQ) Vg (cAdq) € p/qgives (sAq) Vg (aAa) Vg (bAQ) €p/q
or (sAq) Vg (aAq) Vg (cAq)€p/qor (sAq)Vg(cAag) Vg (bAQg) € p/g; hence
sVaVvVbeporsVaVceporsVbVeéep/q, as needed. O

Classically, in the lattice £ every proper filter is contained in a maximal filter,
its S-version is the following result.

THEOREM 4.4. If S is a join closed subset of £, then each proper filter of £
disjoint with S is contained in an S-2-absorbing filter of £.

PROOF. Let F be a proper filter of £ with NS = () and put Q the set of filters
containing F' disjoint with S. Since F' € Q, Q # (. Moreover, (Q,C) is a partial
order. It is easy to see that € is closed under taking unions of chains and so {2 has
at least one maximal element by Zorn’s Lemma, say p. Since SNp=0 and 0 € S,
we see that 0 ¢ p and p # £. It remains to show that p is a 2-absorbing filter by
Example 3.1 (2). Now let a Vb,a V¢, bV ¢ ¢ p; we must show that a VbV c ¢ p
for some elements a,b,c € £. Since a Vb ¢ p, we have F C p G p AT ({a V b}).
By maximality of p in , we must have SN (p A T({a V b})) # 0, and so there
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exist s; € S, t; € £ and p; € p such that s; = p; A (a VbV ty). Similarly, there
exist so,83 € S, ta,t3 € £ and py,ps € p such that s = ps A (a V¢V t2) and
s3=p3sA(bVeVits). Ptu=aVbVi,v=aVeVisand w =0V cVts. Then
s1VsaVss=(p1 Au)V(pa Av)V (ps Aw) =

((prVp2) A2 Vu)A(pr Vo)A (uVw))V(ps Aw) =

((p1Vp2) A(p2Vu)A(p1 Vo)A (aVbVeVig Vis))V(ps Aw). Since s1VsaVsz €S
and (p1 Vp2) A(p2Vu)A(p1 Vo) € p (as p is a filter), we conclude that aVbVe ¢ p
since S Np = 0. Thus p is a 2-absorbing filter of £. O

DEFINITION 4.1. Let S be a join closed subset of £ and p a filter of £ disjoint
with S. Then p is said to be an S-mazximal filter if there exists a fivred s € S and
whenever p C q for some filter q of £, then either sV qC p or qNS # .

Classically, in the lattice £ every maximal filter is a 2-absorbing filter, its
S-version is the following result.

THEOREM 4.5. If S is a join closed subset of £, then every S-maximal filter
of £ is an S-2-absorbing filter.

PROOF. Let p be an S-maximal filter. So if there exists a fixed s € S, p C q
for some filter q of £ implies that s Vq C p or qN S # 0. Now, we will show that
p is an S-2-absorbing filter. Let  V y V z € p for some z,y,z € £. It is enough to
show that sVzVyeporsvVazVzeporsVyVzep. On the contrary, assume
that sVaVy¢p,sVeVz¢gpand sVyVz¢p. This givesp G pAT({zVy}),
PSS PAT({zVz})and p G pAT({yVz}). Since p is S-maximal, we conclude that
V(AT ({zVy}) € por (PAT({zVyh)NS £ 0. £V (pAT({xVy})) C p, then
sVaVy=sV(LA(0VzVy)) € p which is impossible. So (pAT({zVy}))NS # 0.
Likewise, (p AT({zVz})) NS #Pand (pAT({yV z})) NS # 0. Then there exist
S1, 82, 83 € S such that s; = p1A(aVaVy), so = paA(bVaVz) and s3 = p3A(cVyVz)
for some p1,p2,p3s € pand a,b,c € £. Put u = aVaVy, v =bVeVzand w = cVyVz
(so u Vv, uVw,vVwep). Then s;VsaVsy=(p1Au)V(p2Av)V(psAw) =
((prVp2) A (P2 Vu)A(p1Vo)A(aVbVevaVvb))V(psAw) € pNS, as p is a filter,
a contradiction. Thus p is an S-2-absorbing filter of £. ]

DEFINITION 4.2. Let S be a join closed subset of £. We say that a filter F' of
£ is S-finite if sV F C G C I for some finitely generated filter G of £ and some
s € S. We say that £ is S-Noetherian if each filter of £ is S-finite.

PROPOSITION 4.4. If S is a join closed subset of £ and F a filter of £ which
is maximal among all non-S-finite filters of £, then F is a 2-absorbing filter of £.

PROOF. Since sV £ C T({s}) C £ for every s € SN L, £ is S-finite. If F' is
not 2-absorbing, then there exist x,y,z € £ such that z Vy,xV z,yV 2z ¢ F but
rVyVz e F. Since F G FAT({xVy}), we conclude that F AT ({xVy}) is S-finite
by maximality of F'; hence s V (FAT({z Vy}) C

TH{fHN(@VyVa),- foN@VyVan)})
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for some s € S, f1,---,fn € Fand a1, -+ ,a, € £. SinceF% (F:pxzVy), we
have (F : ¢ x Vy) is S-finite, so t V (F :x x Vy) C T({b1, - ,bx}) for some t € S
and by, ,b, € (F:ga). Nowlet fe F (so fVvsesV(FAT{zVy})). Then
sVf=6VHVA (fin(zVyVa))

iz (sV V) NN (sV fVaVyVa)),
sou=A (sVfVa;)€e(F:igaxVy) (sotVue (F:pxVy)) which gives
tVu={tVu)V (A b)) = A (tVu V).
Therefore sV fVt=A" 1 (sV fViVEOANAN (sVfVEVaVaVy)) =
"L(SVEVEVOA @VyVEVU) = AT (sV IV VAN (VY Vb VEVu)).

So (sVt)VF C T(A) C F,where A = {f1Vt, -+, fuVt,xVyVby, - ,xVyVby} C F;
hence F' is S-finite, a contradiction. Thus F' is a 2-absorbing filter of £. O

Compare the next theorem with Proposition 4 in [1].

THEOREM 4.6. If S is a join closed subset of £, then £ is S-Noetherian if and
only if every 2-absorbing filter of £ (disjoint from S) is S-finite.

PROOF. Suppose that for each 2-absorbing filter of £ (disjoint from S) is S-
finite. Assume that £ is not S-Noetherian and look for a contradiction. Then
the set Q) of all non-S-finite filters of £ is inductively ordered under inclusion. By
Zorn’s Lemma, choose p maximal in 2. Then Proposition 4.4 implies that p is a
2-absorbing filter. If pN S # (, then sVp C T({s}) C p for every s € pN S gives p
is S-finite, a contradiction. Thus p NS = (). Now, by the hypothesis, p is S-finite
which is impossible since p € 2. Thus £ is S-Noetherian. The other implication
is clear. (|

We obtain the following S-version of Cohen’s Theorem [4].

THEOREM 4.7. Let S be a join closed subset of £. The following assertions are
equivalent:

(1) £ is S-Noetherian;

(2) Every S-2-absorbing filter of £ is S-finite;

(3) Every 2-absorbing filter of £ is S-finite.

PrOOF. The implication (1) = (2) is clear. To see the implication (2) = (3),
let q be a 2-absorbing filter of £. If N S # 0, then s Vq C T({s}) C q for every
s € qNS gives q is S-finite. If NS = ), then q is an S-2-absorbing filter of £; so
by (2), q is S-finite.

(3) = (1) Follows from Theorem 4.6. O

PROPOSITION 4.5. Let £ = £1 X £9 be a decomposable lattice and S = S1 X Sa,
where S; is a join closed subset of £;. Suppose that p = p1 X p2 is a filter of £.
The following statements are equivalent:

(1) p is an S-2-absorbing filter of £;

(2) p1 is an Sy-2-absorbing filter of £1 and p2 N Se # 0 or p2 is an Sp-2-
absorbing filter of £2 and p1 NSy # O or py1 is an Sy-prime filter of £1 and p2 is
an So-prime filter of £5.
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PROOF. (1) = (2) Suppose that p is an S-2-absorbing filter of £. Then we
keep in mind that there exists a fixed s = (s1,82) € S that satisfies the S-2-
absorbing condition. Since pNS = ), we have either p; N.S; = 0 or p2 NSy = 0. If
p1NS; # 0, we will show that ps is an S3-2-absorbing filter of £5. Let xVyVz € p2
for some z,y,z € £3. Then (1,2) V. (1,y) Ve (1,2) = (1, Vy V z) € p gives
sVe(1L,2) Ve (Ly) = (1,52 VaVy) epor sV (l,2) Ve (1,2) = (1,85 VaVz)EP
or sV, (1,y) Ve (1,2) = (1,82 Vy V z) € p. This shows that sV Vy € pa or
soVaxVzepgorsyVyVz e pa. Hence, pg is an S3-2-absorbing filter of £5.
Similarly, if Sy N p2 # 0, then p; is an S;-2-absorbing filter of £1. Now assume
that S; Np1 = 0 and Sy Npz = (. We will show that p; is an Sq-prime filter of £
and ps is an Sy-prime filter of £5. Suppose that py is not an Si-prime filter of £1.
Then there exist a,b € £1 such that aVb € py but s;Va ¢ p1 and s1Vb ¢ p1. Since
SaNpe = (), we conclude that s ¢ pa. Then (a,0)V,(0,1)V. (b, s2) = (aVb,1) € p
gives sV, (a,0) V. (0,1) = (s1Va,1) € por sV.(a,0)V.(b,s2) = (s1VaVb,s2) €p
or sV (0,1) V. (b,s2) = (s1 Vb1) €p;sos;Va€pyorsy€paors VbeEp
which is a contradiction. Therefor, p; is an Si-prime filter of £1. Similarly, p2 is
an Sy-prime filter of £5.

(2) = (1) Let p1 NSy # 0 and p2 be an Sa-2-absorbing filter of £2. At first,
note that pN S = 0. Let (a,z) Ve (b,y) Ve (¢,2) = (aVbVe,xVyVz) € p for
some (a,z),(b,y),(c,z) € £. Since p1 NSy # (), there exists s; € Sy such that
s1 Vu € py for all u € £1. Also, there exists sy € Sy satisfying ps to be an S3-2-
absorbing filter of £2. Now, put s = (s1,82) € S. Since pa is an Sy-2-absorbing
filter and x Vy V z € p2, we conclude that so VzVy € pgor ssVzVz € pgor
s2 VyV z € pa. This shows that sV, (a,x) V. (b,y) € p or sV, (a,z) V. (¢,2) € p
or sV, (c,2) Ve (b,y) € p. Hence, p is an S-2-absorbing filter of £. If pa NSy #
and p7 is an S7-2-absorbing filter of £, similar argument shows that p is an S-2-
absorbing filter. Now, suppose that for each i = 1,2, p; is an S;-prime filter of £;.
Let (a,x) Ve (b,y) Ve (e, z) = (aVbVe,zVyVz) € p for some (a,x), (b,y), (¢, z) € £.
since pp is an Si-prime filter and a V bV ¢ € pq, there exists a fixed s; € S such
that s1 Va € pp or s1 Vb € p1 or 81 V¢ € pp. Similarly, there exists sy € S
such that so V& € pa or so Vy € pa or s9Vz € pa. Put s = (s1,82) € S.
Without loss of generality, we may assume that s; Va € py and sy V z € pa. Then
s Ve (a,2) Ve (¢, z) € p. Therefore, p is an S-2-absorbing filter of £. O

COROLLARY 4.1. Let £ = £1 X £9 be a decomposable lattice and S = S X So,
where S; is a join closed subset of £;. Suppose that p = p1 X p2 is a filter of £.
The following statements are equivalent:

(1) p is an S-prime filter of £;

(2) p1 is an Si-prime filter of £1 and pa N Sy # () or pa is an Sy-prime filter
of £o and p1 NSy # 0.

Proor. This is a direct consequence of Proposition 3.1 (1) and Proposition
4.5. (]
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COROLLARY 4.2. Let £ = £1 x --- x £, be a decomposable lattice and S =
S1 X -+ X S, where S; is a join closed subset of £;. Suppose that p =p1 XX Pn
is a filter of £. The following statements are equivalent:

(1) p is an S-prime filter of £;

(2) pi is an S;-prime filter of £; for some i € {1,--- ,n} and p;NS; # 0 for
all j e {1,--- ,n} ~{i}.

PROOF. We use induction on n. For n = 1, the result is true. If n = 2, then
(1) and (2) are equivalent by Corollary 4.1. Assume that (1) and (2) are equivalent
when k < n. Setp’ =P1 X XPn-1, S = Sl><"'XSn_1 and £’ = .£1>("'><£n_1.
Then by Corollary 4.1, p = p’ X pn is an S-prime filter of £ if and only if p’ is an
S’-prime filter of £" and p, NS, # 0 or p’ NS’ # 0 and py is a S,-prime filter of
£,. Now the assertion follows from the induction hypothesis. O

Compare the next theorem with Theorem 3 in [13].

THEOREM 4.8. Let £ = £1 X -+ X £, be a decomposable lattice and S =
S1 XX Sy, where S; is a join closed subset of £;. Suppose that p = p1 X+ X Pn
is a filter of £. The following statements are equivalent:

(1) p is an S-2-absorbing filter of £;

(2) px is an Si-2-absorbing filter of £, for some k € {1,--- ,n} and pjNS; # 0
for all j € {1,--- ,n} ~ {k} or px, is an Sk, -prime filter of £, and px, is an
Sk, -prime filter of £y, for some 1 < ki # ko < n and p;NS; # 0 for each
jed{l,--,n}~ k1, k2}.

PROOF. We use induction on n. For n = 1, the result is true. If n = 2,
then (1) and (2) are equivalent by Proposition 4.5. Suppose that (1) and (2) are
equivalent when k < n. Set p = p1 X -+ X pn_1, ' = 51 x --- x S,_1 and
£ =Ly x-+x £,_1. Then by Proposition 4.3, p = p’ X pn is an S-2-absorbing
filter of £ if and only if p’ NS’ # () and py is a S,-2-absorbing filter of £,, or p’
is an S’-2-absorbing filter of £’ and p, N S, # 0§ or p’ is an S’-prime filter of £’
and pn is an S,-prime filter of £,,. Now the assertion follows from the induction
hypothesis and Corollary 4.2. O
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