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Selvaraj Ganesan

Abstract. In this article, we introduced and studied n∆-open sets in nano
topological spaces [9]. We offer a new class of sets called n∆g-closed sets in

nano topological spaces and we study some of its basic properties [4]. We

introduce n∆-continuous maps, n∆g-continuous maps, n∆-irresolute maps,
n∆g-irresolute maps, contra n∆-continuous maps and contra n∆g-continuous

maps in nano topological spaces and discuss some of their properties.

1. Introduction

Several notions of open-like and closed-like sets in nano topological spaces were
introduced and studied. The beginning was with M. Lellis Thivagar and Carmel
Richard who initiated the notion of nano forms of weakly open sets and nano
continuity, [5,6]. The concept of nano continuity in nano topological spaces was
extended to nano generalized continuity, [1]. However, another extension of continu-
ity in nano topological spaces called nano generalized semi continuity was obtained
in [2].

Recently, the idea of introducing new classes of nano continuity-like in nano
topological spaces is still attracting many researchers, for example [7,10–12].

A set in a topological space is called ∆-open if it is the symmetric difference of
two open sets. The notion of ∆-open sets appeared in [8] and in [3]. However, it
was pointed out in [8] and in [3] that the notion of ∆-open sets is due to a preprint
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by M. Veera Kumar. The complement of a ∆-open set is ∆-closed.

A set in a nano topological space is called n∆-open if it is the symmetric dif-
ference of two nano open sets were initiated, [9].

Preliminary concepts required in our work are briefly recalled in section 2.
In section 3, the concept of n∆g-continuous maps and n∆g-irresolute maps. We
introduce contra n∆g-continuous map in nano topological spaces and discuss some
of their properties.

2. Preliminaries

Definition 2.1. [5] Let U be a non-empty finite set of objects called the uni-
verse and R be an equivalence relation on U named as the indiscernibility relation.
Elements belonging to the same equivalence class are said to be indiscernible with
one another. The pair (U, R) is said to be the approximation space. Let X ⊆ U.

(1) The lower approximation of X with respect to R is the set of all objects,
which can be for certain classified as X with respect to R and it is denoted
by LR(X).
That is, LR(X) =

⋃
xϵU{R(X) : R(X) ⊆ X} where R(x) denotes the

equivalence class determined by X.
(2) The upper approximation of X with respect to R is the set of all objects,

which can be possibly classified as X with respect to R and it is denoted
by UR(X) .
That is, UR(X) =

⋃
xϵU{R(X) : R(X) ∩X ̸= ϕ}

(3) The boundary region of X with respect to R is the set of all objects, which
can be neither in nor as not-X with respect to R and it is denoted by
BR(X) .
That is, BR(X) = UR(X)− LR(X).

Definition 2.2. [5] If (U, τR(X)) is the nano topological space with respect
to X where X ⊆ U and if A ⊆ U, then

(1) The nano interior of the set A is defined as the union of all nano open
subsets contained in A and it is denoted by nint(A). That is, nint(A) is
the largest nano open subset of A.

(2) The nano closure of the set A is defined as the intersection of all nano
closed sets containing A and it is denoted by ncl(A). That is, ncl(A) is
the smallest nano closed set containing A.

Definition 2.3. [8,12] A subset A of a space (X, τ) is called ∆-open if A =
(B − C ) ∪ (C − B ), where B and C are open subsets of X. The complement of
∆-open sets is called ∆-closed sets.

Definition 2.4. [9] A subset S of a space (U, τR(X)) is said to be nano
∆-open set (in short, n∆-open) if S = (A − B ) ∪ (B − A ), where A and B
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are nano-open subsets in U. The complement of nano-∆-open sets is called nano
-∆-closed sets.

Definition 2.5. [9] A subset S of a space (U, τR(X)) is said to be semi nano
∆-open set (in short, sn∆-open) if S = (A − B ) ∪ (B − A ), where A and B are
nano semi-open subsets in U. The complement of nano semi ∆-open sets is called
nano semi ∆-closed sets.

Definition 2.6. [9] The nano interior of a set A is denoted by nano ∆-int(A)
(briefly, n∆-int(A)) and is defined as the union of all n∆ open sets contained in
A. i.e., n∆-int(A) = ∪ {G : G is n∆-open and G ⊆ A }.

Definition 2.7. [9] The nano closure of a set A is denoted by nano ∆-
cl(A) (briefly, n∆-cl(A)) and is defined as the intersection of all n∆-closed sets
containing A. i.e., n∆-cl(A) = ∩ {F : F is n∆-closed and A ⊆ F}.

Definition 2.8. [4] A subset A of a space (U, τR(X)) is called a n∆-
generalized closed (briefly, n∆g-closed) set if n∆cl(A) ⊆ T whenever A ⊆ T and
T is n∆-open in (U, τR(X)).
The complement of n∆g-closed set is called n∆g-open set.

Proposition 2.1. [4] Every n∆-closed set is n∆g-closed but not conversely.

3. n∆g-continuous maps and n∆g-irresolute maps

Definition 3.1. A map f : (U, τR(X)) → (V, τR(X)′) is called n∆-continuous
(resp. n∆g-continuous) if f−1(G) is a n∆-closed (resp. n∆g-closed) set of (U,
τR(X)) for every n∆-closed set G of (V, τR(X)′) .

Proposition 3.1. Every n∆-continuous is n∆g-continuous but not conversely.

Proof. The proof follows from Proposition 2.1. □

Theorem 3.1. If f : (U, τR(X)) → (V, τR(X)′) is n∆g-continuous and g :
(V, τR(X)′) → (W, τR(X)′′) is n∆- continuous then g ◦ f : (U, τR(X)) → (W,
τR(X)′′) is n∆g-continuous.

Proof. Let K be n∆-closed set in W. Since g is n∆-continuous, g−1(K) is n∆-
closed in V. Since f is n∆g-continuous, (g ◦ f)−1(G) = f−1(g−1(K)) is n∆g-closed
in U. Therefore g ◦ f is n∆g-continuous. □

Proposition 3.2. A map f : (U, τR(X)) → (V, τR(X)′) is n∆g-continuous
if and only if f−1(G) is n∆g-open in (U, τR(X)) for every n∆-open set G in (V,
τR(X)′) .

Proof. Let f : (U, τR(X)) → (V, τR(X)′) be n∆g-continuous and G be an
n∆-open set in (V, τR(X)′) . Then Gc is n∆-closed in (V, τR(X)′) and since f is
n∆g-continuous, f−1(Gc) is n∆g-closed in (U, τR(X)). But f−1(Gc) = f−1((G))c

and so f−1(G) is n∆g-open in (U, τR(X)).
Conversely, assume that f−1(G) is n∆g-open in (U, τR(X)) for each n∆-open set
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G in (V, τR(X)′) . Let F be a n∆-closed set in (V, τR(X)′) . Then Fc is n∆-
open in (V, τR(X)′) and by assumption, f−1(Fc) is n∆g-open in (U, τR(X)). Since
f−1(Fc) = f−1((F))c , we have f−1(F) is n∆-closed in (U, τR(X)) and so f is n∆g-
continuous. □

Definition 3.2. A map f : (U, τR(X)) → (V, τR(X)′) is called

(1) n∆-irresolute if f−1(G) is a semi nano ∆-closed set of (U, τR(X)) for
every semi nano ∆-closed set G of (V, τR(X)′) .

(2) n∆g-irresolute if f−1(G) is a n∆g-closed set of (U, τR(X)) for every n∆g-
closed set G of (V, τR(X)′) .

example 3.1. Let U = {a, b, c} with U/ R= {{a}, {b, c}} and X = {a}. The
nano topology τR(X) = {ϕ, {a}, U}. Then n∆-closed sets are ϕ, {a}, {b, c}, U
and semi nano ∆-closed sets are ϕ, {a}, {b, c}, U. Let V = {a, b, c} with V/ R=
{{a}, {b, c}} and X = {a, b}. The nano topology τR(X)′ = {ϕ, {a}, {b, c}, V}.
Then n∆-closed sets are ϕ, {a}, {b, c}, V and semi nano ∆-closed sets are ϕ, {a},
{b, c}, V. Define f : (U, τR(X)) → (V, τR(X)′) be the identity map. Then f is
n∆-irresolute.

example 3.2. Let U = {a, b, c} with U/ R= {{a}, {b, c}} and X = {a}. The
nano topology τR(X) = {ϕ, {a}, U}. Then n∆g-closed sets are ϕ, {a}, {b}, {c},
{a, b}, {a, c}, {b, c}, U. Let V = {a, b, c} with V/ R= {{a}, {b, c}} and X = {a,
b}. The nano topology τR(X)′ = {ϕ, {a}, {b, c}, V}. Then n∆g-closed sets are ϕ,
{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, V. Define f : (U, τR(X)) → (V, τR(X)′) be
the identity map. Then f is n∆g-irresolute.

Theorem 3.2. Every n∆g-irresolute map is n∆g-continuous but not con-
versely.

Proof. Let f : (U, τR(X)) → (V, τR(X)′) be a n∆g-irresolute map. Let G
be a n∆-closed set of (V, τR(X)′) . Then by the Proposition 2.1, G is n∆g-closed.
Since f is n∆g-irresolute, then f−1(G) is a n∆g-closed set of (U, τR(X)). Therefore
f is n∆g-continuous. □

Theorem 3.3. Let f : (U, τR(X)) → (V, τR(X)′) and g : (V, τR(X)′) → (W,
τR(X)′′) be any two maps. Then

(1) g ◦ f is n∆g-continuous if g is n∆-continuous and f is n∆g-continuous.
(2) g ◦ f is n∆g-irresolute if both f and g are n∆g-irresolute.
(3) g ◦ f is n∆g-continuous if g is n∆g-continuous and f is n∆g-irresolute.

Proof. Omitted. □

Definition 3.3. A map f : (U, τR(X)) → (V, τR(X)′) is called

(1) contra n∆-continuous if f−1(G) is a n∆-closed set of (U, τR(X)) for every
n∆-open set G of (V, τR(X)′) .

(2) contra n∆g-continuous if f−1(G) is a n∆g-closed set of (U, τR(X)) for
every n∆-open set G of (V, τR(X)′) .
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Proposition 3.3. Every contra n∆-continuous is contra n∆g-continuous but
not conversely.

Proof. Let f : (U, τR(X)) → (V, τR(X)′) be a contra n∆-continuous map
and let G be any n∆-open set in (V, τR(X)′) . Then, f−1(G) is n∆-closed in U.
Since every n∆-closed set is n∆g-closed, f−1(G) is n∆g-closed in U. Therefore f is
contra n∆g-continuous. □

example 3.3. Let U = {a, b, c} with U/ R= {{a}, {b, c}} and X = {a, b}.
The nano topology τR(X) = {ϕ, {a}, {b, c}, U}. Then n∆-closed sets are ϕ, {a},
{b, c}, U and n∆g-closed sets are ϕ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, U. Let V
= {a, b, c} with V/ R= {{b}, {a, c}, {c, a}} and X = {a, c}. The nano topology
τR(X)′ = {ϕ, {a, c}, V}. Then n∆-open sets are ϕ, {b}, {a, c}, V. Define f :
(U, τR(X)) → (V, τR(X)′) be the identity map. Then f is contra n∆g-continuous
but not contra n∆-continuous, since f−1({a, c}) = {a, c} is not n∆-closed in (U,
τR(X)).
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