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TWO VARIABLE HIGHER-ORDER GENERALIZED
FUBINI POLYNOMIALS

Nejla Özmen, Yahya Çin, and Muhammet Ağça

Abstract. This article attempts to present two variable higher-order general-

ized Fubini polynomials N
(r)
n,λ (x , y). The results obtained here include various

families of multilinear and multilateral generating functions, various proper-

ties, as well as some special cases for two variable higher-order generalized

Fubini polynomials N
(r)
n,λ (x , y). Finally, we get several interesting results of

this two variable higher-order generalized Fubini polynomials and obtain an
integral representation.

1. Introduction

Generating functions branch a prominent part in the exploration of colorful
useful parcels of the rows which they induce. They are used in chancing certain
parcels and formulas for numbers and polynomials in a very diverse disquisition
subjects, really, in modern combinatorics. For a regular preface to, and several
interesting operations of the various styles of carrying direct, bilinear, bilateral or
mixed multilateral generating functions for a quite wide kind of rows of special
functions (and polynomials) in one, two and more variables, among important am-
ple literature, we relate to the expansive study by Srivastava and Manocha [17].
There are numerous studies deal with polynomials and their generating functions.
A many of references to special polynomials and their generating functions are pass
in the monographs [8]- [16]. Looking at it the other way, generating functions have
some applications in many fields similar to applied mathematics, algebra, statistics,
combinatorics, and physics. The Fubini-type polynomials happen in combinatorial
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mathematics and play a significant part in the proposition and operation of math-
ematics, therefore numerous number proposition and combinatorics experts have
remarkably studied their parcels and attained series of fascinating results [1]- [9].

Special functions and figures have important places in colorful classification of
mathematics, theoretical drugs, and engineering. The problems occurring in fine
drugs and engineering are framed in terms of dicriminational equations . Utmost of
these equations can only be treated by using colorful families of special polynomials
which give new means of fine analysis. They are extensively used in computational
models of scientific and engineering problems. Additionally, these special polyno-
mials enable the derivate of different useful individualities in a fairly simple way
and help in introducing new families of special polynomials. Throughout this com-
position, we use the coming after memos and delineations.

Let N = {1, 2, 3, · · · } and N0 = N ∪ {0} , Z denotes the set of integer numbers,
R express the set of real numbers and C express the set of complex numbers. We
originally flash back the classical two variable Fubini polynomials by the following
generating function [1], [2], [6]- [9]:

(1.1)

∞∑
n=0

Nn(x , y)
tn

n!
=

ext

1− y (et − 1)
.

While x = 0 in (1.1), the two-variable Fubini polynomials Nn(x , y) reduce to the
normal Fubini polynomials given by [1], [2], [6]- [9]:

(1.2)

∞∑
n=0

Nn(y)
tn

n!
=

1

1− y (et − 1)
.

Substituting y by in (1.2), we have the known Fubini numbers Nn(1) := Nn as
follows [1], [2], [6]- [9]:

∞∑
n=0

Nn
tn

n!
=

1

2− et
.

For more information about the applications of the normal Fubini polynomials and
numbers, [1], [2], [6]- [9], and see also the references cited therein. Let us give a
short list of these polynomials and numbers as follows [10]:

N0(y) = 1, N1(y) = y , N2(y) = y + 2y2, N3(y) = y + 6y2 + 6y3,

N4(y) = y + 14y2 + 36y3 + 24y4,

N0 = 1, N1 = 1, N2 = 3, N3(y) = 13, N4(y) = 75.

The two variable Fubini polynomials N
(r)
n (x , y) of order r are defined by

∞∑
n=0

N (r)
n (x , y)

tn

n!
=

ext

(1− y (et − 1))
r

where r is a positive integer.
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Here, in this paper y will be an discretionary but fixed real number in order

that N
(r)
n (x , y) are polynomials in x for each fixed y . Note here that

N (r)
n (x , y) ∼

((
1− y

(
et − 1

))r
, t
)
.

Especially, if r = 1, then Nn (x , y) = N
(1)
n (x , y) are named two variable Fubini

polynomials and they were introduced by Kargin in [1].
This paper enterprises with the following main objectives:
◦ Carrying theorems giving multilinear and multilateral generating function

relations for the two variable advanced order generalized Fubini polynomials and
agitating their special cases.

◦ Inferring colorful rush relations for the two variable advanced-order general-
ized Fubini polynomials.

We now define the the two variable higher-order generalized Fubini polynomials
as follows.

2. Two variable higher-order generalized Fubini polynomials

Now we attain new generating function for the two variable higher-order gen-

eralized Fubini polynomials N
(r)
n,λ (x , y).

Definition 2.1. The two variable higher-order generalized Fubini polynomials

N
(r)
n,λ (x , y) are defined via the following exponential generating function:

(2.1)

∞∑
n=0

N
(r)
n,λ (x , y)

tn

n!
=

eλxt

(1− y (eλt − 1))
r .

For some special cases of (2.1), we have

N
(r)
n,1 (x , y) = N (r)

n (x , y) and N
(r)
n,1 (0, y) = N (r)

n (y).

We can rewrite (2.1) as

∞∑
n=0

N
(r)
n,λ(x , y)

tn

n!
=

(
1− y

(
eλt − 1

))−r
eλxt

=

∞∑
n=0

N (r)
n (y)

λntn

n!

∞∑
h=0

(λx t)
h

h!

=

∞∑
n=0

∞∑
h=0

N (r)
n (y)λn+h

xhtn+h

n!h!

=

∞∑
n=0

n∑
h=0

N
(r)
n−h(y)λ

nxh
tn

(n− h)!h!

=

∞∑
n=0

[
n∑
h=0

(
n

h

)
N

(r)
n−h(y)λ

nxh

]
tn

n!
.
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Comparison the coefficient of tn/n! yields

N
(r)
n,λ(x , y) =

n∑
h=0

(
n

h

)
N

(r)
n−h(y)λ

nxh.

Theorem 2.1. Formula holds for the two-variable higher-order generalized Fu-

bini polynomials N
(r)
n,λ (x , y) :

(2.2) N
(r1+r2)
n,λ (x1+x 2, y) =

n∑
h=0

(
n

h

)
N

(r1)
n−h,λ(x1, y)N

(r2)
h,λ (x2, y).

Proof. Replacing r by r1 + r2 and x by x1+x 2 in (2.1), we get

∞∑
n=0

N
(r1+r2)
n,λ (x1+x 2, y)

tn

n!
=

eλ(x1+x2)t

(1− y (eλt − 1))
(r1+r2)

=
eλx1t

(1− y (eλt − 1))
r1

eλx2t

(1− y (eλt − 1))
r2

=

∞∑
n=0

N
(r1)
n,λ (x1, y)

tn

n!

∞∑
h=0

N
(r2)
h,λ (x2, y)

th

h!

=

∞∑
n=0

∞∑
h=0

N
(r1)
n,λ (x1, y)N

(r2)
h,λ (x2, y)

tn+h

n!h!

=

∞∑
n=0

n∑
h=0

(
n

h

)
N

(r1)
n−h,λ(x1, y)N

(r2)
h,λ (x2, y)

tn

n!
,

the last equality which is the required proof. □

3. Generating function for two variable higher-order generalized Fubini
polynomials

In this part of the study, first of all we acquire a few families of bilinear and
bilateral generating functions for the two variable higher-order generalized Fubini

polynomials N
(r)
n,λ (x , y) which are generated by (2.1) and given clearly by (2.2) by

using the similar way technique in [11]- [16].

Theorem 3.1. Let

(3.1) Θµ,ψn,p (x , y ; y1 , ..., ys ; ξ) :=

[n/p]∑
h=0

ahN
(r)
n−ph,λ(x , y)Ωµ+ψh (y1, ..., ys)

ξh

(n− ph)!
,

(ah ̸= 0) .

If

Λµ,ψ [y1, ..., ys; ξ] :=

∞∑
h=0

ahΩµ+ψh(y1, ..., ys)ξ
h, (ah ̸= 0)
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then, for every non negative integer p we have

(3.2)

∞∑
n=0

Θµ,ψn,p

(
x , y ; y1, ..., ys;

η

tp

)
tn =

eλxt

(1− y (eλt − 1))
rΛµ,ψ [y1, ..., ys; η] .

Proof. If we express the left-hand side of (3.2) by T and use (3.1),

T =

∞∑
n=0

[n/p]∑
h=0

ahN
(r)
n−ph,λ(x , y)Ωµ+ψh(y1, ..., ys)η

h tn−ph

(n− ph)!
.

Replacing n by n+ ph

T =

∞∑
n=0

∞∑
h=0

ahN
(r)
n,λ(x , y)Ωµ+ψh(y1, ..., ys)η

h t
n

n!

=

∞∑
n=0

N
(r)
n,λ(x , y)

tn

n!

∞∑
h=0

ahΩµ+ψh(y1, ..., ys)η
h

=
eλxt

(1− y (eλt − 1))
rΛµ,ψ [y1, ..., ys; η]

which finishes proof. □

By using alike thought, we as well as attain the next result instantaneously.

Theorem 3.2. Corresponding to an identically non-vanishing function
Ωµ (y1,. . . , ys) of r complex variables y1,. . . , ys (s ∈ N) and of complex order µ, ψ
let

Λn,pµ,ψ (x1+x 2, y ; y1, . . . , ys; t)

:=

[n/p]∑
h=0

ahN
(r1+r2)
n−ph,λ (x1+x 2, y)Ωµ+ψh (y1, . . . , ys) t

h (ah ̸= 0)

and the notation [n/p] means the greatest integer less than or equal n/p. Then, for
p ∈ N, we have

n∑
h=0

[h/p]∑
r=0

(
n− pr

h− pr

)
arN

(r1)
n−h,λ (x1, y)N

(r2)
h−pr,λ (x2, y) Ωµ+ψr (y1, . . . , ys) t

r(3.3)

= Λn,pµ,ψ (x1+x 2, y ; y1, . . . , ys; t)

on condition that each member of (3.3) exists.

Proof. Let T express the first member of the claim (3.3). Then, upon sub-

stituting for the polynomials N
(r1+r2)
n,λ (x1+x 2, y) from the (2.2) into the left hand
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side of (3.3), we attain

T =

[k/p]∑
r=0

n−pr∑
h=0

(
n− pr

h

)
arN

(r1)
n−h−pr,λ (x1, y)N

(r2)
h,λ (x2, y) Ωµ+ψr (y1, . . . , ys) t

r

=

[n/p]∑
r=0

ar

(
n−pr∑
h=0

(
n− pr

h

)
N

(r1)
n−h−pr,λ (x1, y)N

(r2)
h,λ (x2, y)

)
Ωµ+ψr (y1, . . . , ys) t

r

=

[n/p]∑
r=0

arN
(r1+r2)
n−pr,λ (x1+x 2, y) Ωµ+ψr (y1, . . . , ys) t

r

= Λn,pµ,ψ (x1+x 2, y ; y1, . . . , ys; t) .

□

4. Further properties of N
(r)
n,λ (x , y) and some applications

Now we discuss some applications of Theorem 3.1 and Theorem 3.2. If the
multivarible function Ωµ+ψk (y1,. . . ys) s ∈ N is expressed in terms of simplicity
functions of one and more variables, then we can give further applications of the
above theorems.
For example, taking

Ωµ+ψh (y1, . . . , ys) = Φ
(α)
µ+ψh (y1, . . . , ys)

in Theorem 3.1, where the multivarible polynomials Φ
(α)
µ+ψh (y1, . . . , ys) are gener-

ated by (see [11])

(4.1)

∞∑
n=0

Φ(α)
n (x1, . . . , x s) t

n = (1− x1t)
−α

e(x2+···+xs)t,

(
α ∈ C, |t| <

{
|x1|−1

})
,

we attain the following result, which provides a bilateral generating function for

multivariable polynomials Φ
(α)
n (x1, . . . , x s) and two variable higher-order general-

ized Fubini polynomials N
(r)
n,λ (x , y).

Corollary 4.1. If

Λµ,ψ [y1, ..., ys; ξ] : =

∞∑
h=0

ahΦ
(α)
µ+ψh (y1, . . . , ys) ξ

h,

(ah ̸= 0, µ, ψ ∈ C)

and

Θµ,ψn,p
(
x , y ; y1,··· ,ys; ξ

)
: =

[n/p]∑
h=0

ahN
(r)
n−ph,λ(x , y)Ωµ+ψh (y1, . . . , ys)

ξh

(n− ph)!
,

(n ∈ N0, p ∈ N)
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then we have

(4.2)

∞∑
n=0

Θµ,ψn,p

(
x , y ; y1,...,ys;

η

tp

)
tn =

eλxt

(1− y (eλt − 1))
rΛµ,ψ [y1, ..., ys; η]

on condition that each member of (4.2) exists.

Remark 4.1. Using (4.1) and taking

ah = 1 (h ∈ N0) , µ = 0 and ψ = 1

in Corollary 4.1, we find that

∞∑
n=0

[n/p]∑
h=0

N
(r)
n−ph,λ(x , y)Φ

(α)
h (y1, . . . , ys) η

ktn−ph

=
eλxt

(1− y (eλt − 1))
r (1− y1η)

−α
e(y2+···+ys)η,

(
|η| < |y1|−1

)
.

If we choose

r = 2 and Ωµ+ψh (y1, y2) = N
(r)
µ+ψh,λ(y1, y2)

in Theorem 3.1, then we have the following bilinear generating functions

N
(r)
µ+ψh,λ(y1, y2).

Corollary 4.2. If

Λµ,ψ [y1, y2; ξ] :=

∞∑
h=0

ahN
(r)
µ+ψh,λ(y1, y2)ξ

h

(ah ̸= 0, µ, ψ ∈ C)
and

Θµ,ψn,p
(
x , y ; y1,y2; ξ

)
:=

[n/p]∑
h=0

ahN
(r)
n−ph,λ(x , y)N

(r)
µ+ψh,λ(y1, y2)

ξh

(n− hp)!

(n ∈ N0, p ∈ N)
then we have

(4.3)

∞∑
n=0

Θµ,ψn,p

(
x , y ; y1,y2;

η

tp

)
tn =

eλxt

(1− y (eλt − 1))
rΛµ,ψ [y1, y2; η]

on condition that each member of (4.3) exist.

Remark 4.2. Using (2.1) and taking

ah = 1 (k ∈ N0) , µ = 0 and ψ = 1

in Corollary 4.2, we find that

∞∑
n=0

[n/p]∑
h=0

N
(r)
n−ph,λ (x , y)N

(r)
h,λ (y1, y2)

ηhtn−ph

(n− ph)!
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=
eλxt

(1− y (eλt − 1))
r

eλy1η

(1− y2 (eλη − 1))
r .

If we choose

r = 2 and Ωµ+ψh (y1, y2) = N
(r3)
µ+ψh,λ(y1,y2)

in Theorem 3.2, then we have the following bilinear generating functions

N
(r3)
µ+ψh,λ(y1,y2).

Corollary 4.3. If

Λn,pµ,ψ (x1+x 2; y ; y1, y2; t)

:=

[n/p]∑
h=0

ahN
(r1+r2)
n−ph,λ (x1+x 2, y)N

(r3)
µ+ψh,λ (y1,y2) t

h

(ah ̸= 0, µ, ψ ∈ C)

then, we have

n∑
h=0

[h/p]∑
r=0

(
n− pr

h− pr

)
arN

(r1)
n−h,λ (x1, y)N

(r2)
h−pr,λ (x2, y)N

(r3)
µ+ψr,λ(y1, y2)t

r

= Λn,pµ,ψ (x1+x 2, y ; y1, y2; t) .

Moreover for every convenient choice of the coefficients ah (h ∈ N0) if the mul-
tivarible functions Ωµ+ψh (y1, . . . , ys), s ∈ N are expressed as an suitable product
of several simpler functions, the claim of Theorem 3.1 and Theorem 3.2 can be
applied in order to derive various families of multilinear and multilateral gener-
ating functions for the two variable higher-order generalized Fubini polynomials

N
(r)
n,λ(x , y).

Theorem 4.1. For r ⩾ 1 and n ⩾ 1, we have

(4.4)
∂

∂x
N

(r)
n,λ(x , y) = λnN

(r)
n−1,λ(x , y).

Proof. By (2.1), we have

∂

∂x

( ∞∑
n=0

N
(r)
n,λ(x , y)

tn

n!

)
=

∂

∂x

(
eλxt

(1− y (eλt − 1))
r

)
∞∑
n=0

∂

∂x
N

(r)
n,λ(x , y)

tn

n!
= λt

eλxt

(1− y (eλt − 1))
r

= λ

∞∑
n=0

N
(r)
n,λ(x , y)

tn+1

n!

= λ

∞∑
n=1

N
(r)
n−1,λ(x , y)

tn

(n− 1)!
.
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Especially, for n = 0, we get

N
(r)
0,λ (x , y) = 1,

∂

∂x
N

(r)
0,λ (x , y) = 0

and

(4.5)

∞∑
n=1

∂

∂x
N

(r)
n,λ(x , y)

tn

n!
= λ

∞∑
n=1

N
(r)
n−1,λ(x , y)

tn

(n− 1)!
.

□

Comparison the coefficients on both sides of (4.5), we attain the following
theorem.

Theorem 4.2. For r ⩾ 1 and n ⩾ 0, we have

(1 + y)
∂

∂y
N

(r)
n,λ(x , y) + rN

(r)
n,λ(x , y)

=

n∑
h=0

(
n

h

)
λh
[
y
∂

∂y
N

(r)
n−h,λ(x , y) + rN

(r)
n−h,λ(x , y)

]
.

Proof. By (2.1), we have

∂

∂y

( ∞∑
n=0

N
(r)
n,λ(x , y)

tn

n!

)
=

∂

∂y

(
eλxt

(1− y (eλt − 1))
r

)
,

∞∑
n=0

∂

∂y
N

(r)
n,λ(x , y)

tn

n!
= −r

eλxt
(
1− eλt

)
(1− y (eλt − 1))

r+1 ,

(
1− y

(
eλt − 1

)) ∞∑
n=0

∂

∂y
N

(r)
n,λ(x , y)

tn

n!

= −r
∞∑
n=0

N
(r)
n,λ(x , y)

tn

n!
+ r

∞∑
n=0

∞∑
h=0

N
(r)
n,λ(x , y)

tn

n!

(λt)
h

h!
,

(1 + y)

∞∑
n=0

∂

∂y
N

(r)
n,λ(x , y)

tn

n!
− y

∞∑
n=0

∞∑
h=0

∂

∂y
N

(r)
n,λ(x , y)

tn

n!

(λt)
h

h!

= r

∞∑
n=0

∞∑
h=0

N
(r)
n,λ(x , y)

tn

n!

(λt)
h

h!
− r

∞∑
n=0

N
(r)
n,λ(x , y)

tn

n!
,

(1 + y)

∞∑
n=0

∂

∂y
N

(r)
n,λ(x , y)

tn

n!
− y

∞∑
n=0

n∑
h=0

λh
∂

∂y
N

(r)
n−h,λ(x , y)

tn

(n− h)!h!

= r

∞∑
n=0

n∑
h=0

λhN
(r)
n−h,λ(x , y)

tn

(n− h)!h!
− r

∞∑
n=0

N
(r)
n,λ(x , y)

tn

n!
.(4.6)
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Comparison the coefficients on both sides of (4.6),

(1 + y)
∂

∂y
N

(r)
n,λ(x , y)− y

n∑
h=0

(
n

h

)
λh

∂

∂y
N

(r)
n−h,λ(x , y)

= r

n∑
h=0

(
n

h

)
λhN

(r)
n−h,λ(x , y)− rN

(r)
n,λ(x , y),

(1 + y)
∂

∂y
N

(r)
n,λ(x , y) + rN

(r)
n,λ(x , y)

= r

n∑
h=0

(
n

h

)
λhN

(r)
n−h,λ(x , y) + y

n∑
h=0

(
n

h

)
λh

∂

∂y
N

(r)
n−h,λ(x , y)

so the proof is complete. □

Theorem 4.3. For n ⩾ 0, we have

N
(r)
n+1,λ(x , y) = λ

[
xN

(r)
n,λ(x , y) + yr

n∑
h=0

(
n

h

)
N

(r)
n−h,λ (x , y)Nh,λ (1, y)

]
.

Proof. If we take the derivative of (2.1), with respect to t either sides of the
expression, we have

d

dt

( ∞∑
n=0

N
(r)
n,λ(x , y)

tn

n!

)
=

d

dt

(
eλxt

(1− y (eλt − 1))
r

)
,

∞∑
n=1

N
(r)
n,λ(x , y)

tn−1

(n− 1)!

= λx
eλxt

(1− y (eλt − 1))
r + yλr

eλxt

(1− y (eλt − 1))
r

eλt

(1− y (eλt − 1))
,

∞∑
n=0

N
(r)
n+1,λ(x , y)

tn

n!

= λx

∞∑
n=0

N
(r)
n,λ(x , y)

tn

n!
+ yλr

∞∑
n=0

∞∑
h=0

N
(r)
n,λ(x , y)Nh,λ(1, y)

tn

n!

th

h!
,

∞∑
n=0

N
(r)
n+1,λ(x , y)

tn

n!

= λx

∞∑
n=0

N
(r)
n,λ(x , y)

tn

n!
+ yλr

∞∑
n=0

n∑
h=0

N
(r)
n−h,λ(x , y)Nh,λ(1, y)

tn

(n− h)!h!
,
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∞∑
n=0

N
(r)
n+1,λ(x , y)

tn

n!

= λx

∞∑
n=0

N
(r)
n,λ(x , y)

tn

n!
+ yλr

∞∑
n=0

n∑
h=0

(
n

h

)
N

(r)
n−h,λ(x , y)Nh,λ(1, y)

tn

n!
.

On equating like powers of tn/n! on both sides in the above expression and
alter some simplification we arrive at our desired result. □

Theorem 4.4. The following integral representation

(4.7)

β∫
α

N
(r)
n,λ(x , y)dx =

N
(r)
n+1,λ(β, y)−N

(r)
n+1,λ(α, y)

λ (n+ 1)
.

Proof. From (4.4), we derive that

β∫
α

N
(r)
n,λ(x , y)dx =

β∫
α

1

λ (n+ 1)

∂

∂x
N

(r)
n+1,λ(x , y)dx

=
1

λ (n+ 1)

β∫
α

∂

∂x
N

(r)
n+1,λ(x , y)dx

=
1

λ (n+ 1)

[
N

(r)
n+1,λ(β, y)−N

(r)
n+1,λ(α, y)

]
which means the asserted result (4.7). □
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11. N. Özmen and E. Erkus-Duman, Some results for a family of multivariable polynomials. AIP

Conf. Proc., 1558(2013), 1224-1127.
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15. D. Korkmaz-Düzgun and E. Erkus-Duman, Generating functions for k-hypergeometric func-

tions. J. Appl. Phys. Math., 9(3)(2019), 119-126.
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