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SECURE DOUBLE DOMINATION IN GRAPHS

Veena Bankapur and B. Chaluvaraju

Abstract. A double dominating (DD) set Dd of a graph G = (V,E) is called

a secure double dominating (SDD)-set in G, if for every vertex u ∈ V − Dd,

there exists v ∈ Dd is adjacent to u such that (Dd −{v})∪ {u} is a DD-set of
G. The secure double domination number γds(G) is the minimum cardinality

of an SDD - set of G. In this paper, many bounds on γds(G) are obtained

and its exact values for some standard graphs are found. Also, its relationship
with other parameters is investigated.

1. Introduction

The graphs G = (V,E) considered here are simple, finite and undirected with-
out isolated vertices, loops and multiple edges. In general, ⟨X⟩ denotes the sub
graph induced by the set of vertices X. For any undefined term in this paper, we
refer to Harary [10].

A set D ⊆ V of vertices in a graph G is called a dominating set if every vertex
u ∈ V −D is adjacent to at least one vertex v ∈ D. The domination number γ(G)
equals the minimum cardinality of a dominating set of G. Books on domination
and its related parameters [5,7,9,11–15,19,20] have given sufficient impetus to
the expansive growth of this area.

Let D be a minimum dominating set of G. If V − D contains a dominating
set Di of G, then Di is called an inverse dominating (ID) set of G with respect to
D. The inverse domination number γi(G) is the minimum cardinality of an ID-set
of G. This concept was introduced by Kulli and Sigarkanti [18] and studied by
Domke et al., [8].
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A dominating set D ⊆ V is a secure dominating (SD) set Ds of G, if for each
u ∈ V −D, there exists a vertex v ∈ D such that uv ∈ E(G) and (D − {v})

⋃
{u}

is a dominating set of G. The secure domination number of γs(G) is the minimum
cardinality of an SD-set of G. This concept of protection was initiated by Cockayne
et al., [4] and studied by [2,6,17,21].

A set Dd ⊆ V is a double dominating (DD)-set for G, if each vertex in V is
dominated by at least two vertices in Dd. The double domination number γd(G) is
the minimum cardinality of a DD-set of G. This concept was introduced by Harary
and Haynes [12] and studied by [3,22,23].

Many applications of domination in graphs can be extended to secure double
domination. For example, if we think of each vertex in a dominating set as a
fileserver for a computer network, then each computer in the network has direct
access to a fileserver. It is sometimes reasonable to assume that this access is
available even when one of the fileserver goes down. A secure double dominating
set provides the desired fault tolerance for such cases because each computer has
access to at least two fileservers and each of the fileservers has direct access to at
least one backup fileserver.

In this paper, we introduce the concept of secure double domination as follows.
A DD-set Dd ⊆ V is a secure double dominating (SDD)-set of G, if for every

vertex u ∈ V −Dd, there exists v ∈ Dd is adjacent to u such that (Dd −{v})∪{u}
is a DD-set of G. The secure double domination number γds(G) is the minimum
cardinality of an SDD - set of a graph G. A γds - set is a minimum SDD-set of
G. Similarly, other dominating related parameters can be expected. Note that
γds(G) is defined only if G has no isolated vertices. First, we start with a couple
of observations.

Observation 1.1. If Dd = {u, v} is an SDD-set of G, then u, v are called a
secure double dominating vertices of G. A vertex u of G is said to be a γds-required
vertex of G if u lies in every γds-set of G.

Observation 1.2. Let G be a connected graph with p ⩾ 4. Then DD - set Dd

is an SDD - set if and only if for any two vertices {v, w} ∈ Dd, there exists a vertex
u ∈ V −Dd such that N(u) ∩Dd = {v, w}.

Observation 1.3. Let T be a tree with p ⩾ 7. Then every end-vertices and its
supporting vertices must contained in SDD - set in T .

2. Specific familes of graphs

The following computed values of γds(G) are stated without proof.

Proposition 2.1.

(i) For any complete graph Kp with p ⩾ 4,

γds(Kp) = 2.
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(ii) For any path Pp,

γds(Pp) =

{
does not exist, if p ⩽ 6

p− n, if 4n+ 3 ⩽ p ⩽ 4n+ 6; n ⩾ 1.

(iii) For any cycle Cp with p ⩾ 3,

γds(Cp) =

{
p− 1, if 3 ⩽ p ⩽ 7

p− n, if 4n+ 4 ⩽ p ⩽ 4n+ 7; n ⩾ 1.

(iv) For any complete bipartite graph Kr,t with 1 ⩽ r ⩽ t,

γds(Kr,t) =



does not exist, if r = 1; t ⩾ 1

t+ 1, if r = 2; t ⩾ 2

4, if r = 3; t = 3

5, if r = 3, 4; t ⩾ 4

6, if r ⩾ 5; t ⩾ 5.

To prove our next results, we make use of the following definitions:
A star is a graph K1,p−1; p ⩾ 3 composed of a central vertex x1 and (p − 1)-

other vertices only connected to x1. A tree T1 is a 2-subdivided star of K1,p−1 ;
p ⩾ 3, whose edges are subdivided twice, that is each edge is replaced by a path
of length 3 by adding a vertex of degree 2. A tree T ∗ consists of a path Pn with
n ⩾ 1 (This path is referred to as the spine of the tree T ∗) and a collection of Ti,
where each vertex on Pn is joined to central vertex xi for i = 1, 2, . . . , n from each
Ti (Here, T1

∼= T ∗, if n = 1 in T ∗). A tree T ∗∗ is consisting of a path Pn with n ⩾ 2
and collection of P4, where each vertex on Pn is joined to one end-vertex from each
P4, see Figure-1.

Figure 1. Tress of T1, T
∗ and T ∗∗.

Proposition 2.2. Let T ∗ and T ∗∗ be a special type of tree. Then

(i) γds(T
∗) = p− n, if n ⩾ 1.

(ii) γds(T
∗∗) =

{
p− 1, if 2 ⩽ n ⩽ 4

4n−
⌈n
2

⌉
+ 1, if n ⩾ 5.
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3. Bounds and characterizations

Theorem 3.1. For any connected graph G with p ⩾ 4,

γt(G) ⩽ γd(G) ⩽ γds(G).

Furthermore, the bounds are achieved on the graph G ∼= Kp; p ⩾ 4.

Proof. Since every SDD-set is a DD-set and every DD-set is a TD-set of a
connected graph G with p ⩾ 4. Hence the result follows.
Furthermore, we have γt(Kp) = γd(Kp) = γds(Kp) = 2 for p ⩾ 4. □

Naturally, every SDD-set is an SD-set and union of any two disjoint SD-set is
an SDD-set of a connected graph G. Hence, we have γs(G) ⩽ γds(G) ⩽ 2γs(G).
These bounds can be improved slightly as follows.

Theorem 3.2. For any connected graph G with p ⩾ 4,

γs(G) + 1 ⩽ γds(G) ⩽ p− γs(G) + 2.

Furthermore, the lower bound is achieved on the graph G ∼= Kp; p ⩾ 4, and
the upper bound is achieved when G ∼= P7.

Proof. Let G be a connected graph with p ⩾ 4. If Dd is a γds-set of G,
then for any u ∈ V −Dd, and v ∈ Dd, u must be adjacent to v, this implies that
Dd − {v} ∪ {u} is a γs-set of a graph G, and γs(G) ⩽ γds(G)− 1. Thus the lower
bound follows.

If Dd is a SDD-set of G. If F = {u1, u2, ..., uk} be the set of vertices in G. Then
F ∪H = Dd, where H ⊆ V (G)−F forms an SD-set of G such that |N [u]| ∩Dd ⩾ 2
for all u ∈ V (G) − Dd and it follows that |Dd| ∪ |Ds| ⩽ k + 2 ⩽ p + 2. Hence
γds(G) + γs(G) ⩽ p+ 2. Thus the upper bound follows.
Furthermore, if γs(Kp) = 1 and γds(Kp) = 2 for p ⩾ 4, then the lower bound is
achieved and if γs(P7) = 3 and γds(P7) = 6, then the upper bound is achieved. □

Theorem 3.3. For any connected spanning subgraph H of a connected graph
G with p ⩾ 7,

γds(G) ⩽ γds(H).

Furthermore, the bound is achieved on the graph G ∼= C4n+3;n ⩾ 1.

Proof. Since every SDD-set of a connected spanning subgraph H is an SDD-
set of a connected graph G with p ⩾ 7. Hence the result follows.
By Proposition 2.1 (ii) and (iii), the bound is achieved on the connected spanning
subgraph H ∼= P4n+3;n ⩾ 1 of a connected graph G ∼= C4n+3;n ⩾ 1. □

In the next few results, we obtain the bounds on γds(G) in terms of order,
minimum/maximum degree and edge independence number of a graph. Further,
to prove the next result, we make use of the following graph G∗.

Theorem 3.4. For any connected graph G with p ⩾ 4,

2 ⩽ γds(G) ⩽ p− 1.

Furthermore, the lower bound is attained if and only if G ∼= G∗ or Kp; p ⩾ 3 and
an upper bound attained if and only if G ∼= Pp; 7 ⩽ p ⩽ 10 or Cp; 3 ⩽ p ⩽ 7 or T1.
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Figure 2. The graph G∗.

Proof. Let G be a connected graph with p ⩾ 4. If every SDD-set is a DD-set
Dd of G, then we have 2 ⩽ γd(G) ⩽ γds(G). Therefore, for every SDD-set exist
atleast two vertices and atmost V − {v} vertices, where v ∈ V − Dd. Hence the
lower and upper bounds are follows.
Now, we prove γds(G) = 2 if and only if G ∼= Kp; p ⩾ 3.
On the contrary, suppose the graph G ∼= G∗ or Kp; p ⩾ 3, then there exists at least
three vertices u, v and w such that u and v are adjacent and w is adjacent to u and
v which form a cycle of length two, this implies that the set {u, v} is an SDD-set of
G, which is a contradiction. This proves the necessity and the sufficiency is obvious.
Next, we prove γds(G) = p− 1 if and only if G ∼= Pp; 7 ⩽ p ⩽ 10 or Cp; 3 ⩽ p ⩽ 7
or T1.
On the contrary, suppose γds(G) = p − 1 and the given condition is not satisfied,
then there exists a Path Pp with p ⩾ 11 vertices and Cycle Cp with p ⩾ 8 vertices.
By Proposition 2.1 (ii) and (iii), we have γds(G) < p− 1, which is a contradiction.
This proves the necessity and the sufficiency is obvious. □

Theorem 3.5. For any connected graph G with p ⩾ 4,

2p

∆(G) + 1
⩽ γds(G) ⩽ p− δ(G) + 1.

Furthermore, the bounds are achieved when G ∼= Kp; p ⩾ 4.

Proof. Let Dd be a γds-set of a connected graph G with p ⩾ 4. If t is the
number of edges with one end in Dd and the other end in V − Dd. Since every
vertex in Dd has at least one neighbor in Dd,

t ⩽ (∆(G)− 1)|Dd| = (∆(G)− 1)γds(G).

Also every vertex in V − Dd is adjacent to at least two vertices in Dd and so
t ⩾ 2|V −Dd| = 2(p− γds(G)). Since 2p− 2γds(G) ⩽ (∆(G)− 1)γds(G). Hence the
lower bound follows.

Let Dd be a γds-set of a connected graph G with p ⩾ 4. If δ(G) = 1, then
equality holds. Assume that δ(G) ⩾ 2, Let v be a vertex of Dd. Thus V − Dd

contains all neighbors of v except one and so deg(v) − 1 ⩽|V − Dd|= p − (p −
δ(G) + 1) = δ(G)− 1. Thus all the vertices of Dd have the same degree δ(G), and
|V − Dd| = δ(G) − 1. Let u be a vertex of N(v) ∩ Dd. Then u is adjacent to all
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the vertices of V −Dd and hence at this point every vertex of V −Dd is securely
double dominated by u and v. Thus Dd = {u, v} and all the vertices of V −Dd are
mutually adjacent. Hence the upper bound follows.

By Proposition 2.1, both lower and upper bounds are achieved when G ∼= Kp;
p ⩾ 4. □

Theorem 3.6. For any connected graph G with δ(G) ⩾ 2 and p ⩾ 4,

β1(G) + 1 ⩽ γds(G) ⩽ 2β1(G),

where β1(G) is an edge independence number of G.
Furthermore, the lower bound is achieved on the graph G ∼= Cp; p = 2n;n ⩾ 2 and
an upper bound is achieved on the graph G ∼= Kp; p = 2n+ 1;n ⩾ 2.

Proof. Let G be a connected graph with δ(G) ⩾ 2 and and p ⩾ 4. If M is a
maximum independent set of edges in G and Dd is the vertices in the set of edges
of M . Since V −Dd is an independent set, each v ∈ V −Dd must have at least two
neighbors in Dd. Further, the vertices of Dd secure double dominate themselves.
This implies that SDD - set Dd for at least | M | + 1 and atmost twice the | M |
of G. Thus the result follows. □

Theorem 3.7. Let Dd be an SDD-set of a connected graph G with p ⩾ 4. Then
one of the following conditions holds:

(i) Dd exists if and only if every vertex in V −Dd contains at least two strong
neighbors.

(ii) |V −Dd|⩽ |Dd|.

Proof. Let Dd be an SDD-set of a connected graph G with p ⩾ 4. Suppose
a vertex u ∈ V −Dd has only one strong neighbors, other vertices in V −Dd have
at least two strong neighbors. Then for every u ∈ V − Dd, there exists a vertex
v ∈ Dd such that Dd is an SDD - set of G, which is a contradiction. Hence every
vertex in V −Dd should contain at least two strong neighbors. □

4. Inverse secure double domination

Let Dd be a γds-set of a connected graph G with p ⩾ 4. If V −Dd contains a
SDD - set D1

d of G, then D1
d is called an inverse secure double dominating (ISDD)

set with respect to Dd. The inverse secure double domination number γ−1
ds (G) is

the minimum cardinality of an ISDD - set of G. A γ−1
ds - set is a minimum ISDD -

set of G.

Observation 4.1. Not all graphs have an ISDD - set. For example, the graph
G ∼= Pp; 7 ⩽ p ⩽ 10 or Cp; 3 ⩽ p ⩽ 7 or T1.

An application of ISDD-set is found in a Computer Network. We consider a
computer network in which a core group of file servers has the ability to commu-
nicate directly with every computer outside the core group. In addition, each file
server is directly linked with at least one other backup file server where duplicate
information is stored. A minimum core group with this property is the smallest
SDD-set for the graph representing the network. If a second important core group
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is needed then a separate disjoint SDD-set provides duplication in case the first is
corrupted in some way. We have γds(G) ⩽ γ−1

ds (G). From the point of networks,

one may demand γds(G) = γ−1
ds (G), whereas many graphs do not enjoy such a

property. For example, we consider graph G∗ (see, Figure 2). Then γds(G
∗) = 2

and γ−1
ds (G∗) = p− 2.

In this case, if p is large in graph G∗, then γ−1
ds (G∗) is sufficiently large compare

to γds(G
∗).

Now, we characterize the γds(G) = γ−1
ds (G).

Proposition 4.1. If Kp is a complete graph with p ⩾ 4, then

γds(Kp) = γ−1
ds (Kp).

Proposition 4.2. Let G be a simple graph with p ⩾ 4. If γds(G) = γ−1
ds (G),

then G has no γds-required vertex.

Proof. Let G be a graph with γds(G) = γ−1
ds (G). Let Dd be a γds-set of G.

Suppose G contains a γds-required vertex u. Then u lies in every γds-set of G. Thus
u ∈ Dd and u ∈ D−1

d , which is a contradiction to D−1
d ⊆ V −Dd. □

Proposition 4.3. If u, v are secure double dominating vertices of a simple
graph G, then γ−1

ds (G) = γds(G− u− v).

Proof. Since u, v are secure double dominating vertices of G, {u, v} is a γds-
set of G. Thus any γ−1

ds -set of G lies in G − {u, v} and is a minimum SDD-set of

G− {u, v}. Hence γ−1
ds (G) = γds(G− u− v). □

Proposition 4.4. Let G and H be two nontrivial complete graphs. Then

γds(G+H) = γ−1
ds (G+H) = 2.

Proof. If G and H are two nontrivial complete graphs, then G + H is a
complete graph with at least 4 vertices. By Proposition 4.1, we have γds(G+H) =
γ−1
ds (G+H) = 2. □

Proposition 4.5. Let G be a connected graph with p ⩾ 4 vertices. If a γ−1
ds -

set exists in G, then

(i) γds(G) + γ−1
ds (G) ⩽ p.

(ii) 2 ⩽ γ−1
ds (G) ⩽ p− 2.

Furthermore, the complete graph K4 realizes the sharp bounds on (i) and (ii).

Proof.

(i) This follows from the definition of γ−1
ds (G).

(ii) By (i) and 2 ⩽ {γds(G), γ−1
ds (G)}. We have γ−1

ds (G) ⩽ p − γds(G). Thus

2 ⩽ γ−1
ds (G) ⩽ p− 2 follows.

By Proposition 4.1, the complete graph K4 realizes the sharp bounds on (i) and
(ii). □
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Construct the graph G∗∗ as follows: Let ei = uivi, 1 ⩽ i ⩽ m and ei+1 = viui+1

be the edges of a cycle C2m. For each ei = uivi, join the vertices uiandvi to two
new vertices xi, yi and also join the vertices xi to the vertices yi to form the graph
G∗∗, see Figure-3.

Figure 3. The graph G∗∗.

Proposition 4.6. Let G∗∗ be a graph with 4m - vertices. Then

γds(G
∗∗) = γ−1

ds (G∗∗) = 2m.

Proof. In the graph G∗∗ of Figure-3, the vertex set V (G∗∗) = {u1, . . . , um,
v1, . . . , vm, x1, . . . , xm, y1, . . . , ym}. Then Dd = {u1, . . . , um, v1, . . . , vm} is a γds-
set with 2m - vertices and D−1

d = {x1, . . . , xm, y1, ..., ym} is a γ−1
ds -set with 2m -

vertices. Thus γds(G
∗∗) = γ−1

ds (G∗∗) = 2m. □

Remark 4.1. Let G1, G2, . . . , Gm be the m - connected components of a graph
G. Let Di

d be a γds-set of Gi, and (Di
d)

−1 be a γ−1
ds -set of Gi, for i = 1, 2, . . . ,m.

Then D1
d ∪D2

d ∪ . . . ∪Dm
d is a γds-set of G and (D1

d)
−1 ∪ (D2

d)
−1 ∪ . . . ∪ (Dm

d )−1 is

a γ−1
ds -set of G. Thus γds(G) =

∑m
i=1 γds(Gi) and γ−1

ds (G) =
∑m

i=1 γ
−1
ds (Gi).

Theorem 4.1. Let G1, G2, . . . , Gm be the m - connected components of a graph
G. Then γds(G) = γ−1

ds (G) if and only if γds(Gi) = γ−1
ds (Gi), for i = 1, 2, . . . ,m.

Proof. Let G1, G2, . . . , Gm be the m - connected components of G. By above
Remark, γds(G) =

∑m
i=1 γds(Gi) and γ−1

ds (G) =
∑m

i=1 γ
−1
ds (Gi).

Therefore, γds(G) = γ−1
ds (G) if γds(Gi) = γ−1

ds (Gi), for i = 1, 2, . . . ,m.

Conversely suppose γds(G) = γ−1
ds (G). We have γds(Gi) = γ−1

ds (Gi) for i =

1, 2, . . . ,m. We now prove that γds(Gi) = γ−1
ds (Gi) for i = 1, 2, . . . ,m. On the

contrary, assume γds(Gi) < γ−1
ds (Gi) for some i. Then γds(Gj) > γ−1

ds (Gj) for some

j; i ̸= j, which is a contradiction. Thus γds(Gi) = γ−1
ds (Gi) for i = 1, 2, . . . ,m. □
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5. Conclusion and open problems

In this article, we combine two domination-related parameters such as secure
domination and double domination to form the secure double domination in graphs.
For the comparative advantages, applications, and mathematical properties point
of view, many concepts and questions are suggested by this research, among them
are the following.

5.1. Secure double domination vs secure 2-domination. A set D ⊆ V
is a 2-dominating set if every vertex in V −D has at least two neighbors in D. A
2-dominating set D is secure 2-dominating set if for every vertex u in V −D such
that v ∈ (D ∩ N(u)) such that D − {v} ∪ {u} is a 2-dominating set. The secure
2-domination number γ2s(G) is the minimum cardinality of a secure 2-dominating
set of G. For more details, one can refer to [1,16].

1. Generally, for any graph G with p ⩾ 4, we have γ2s(G) ⩽ γds(G). There-
fore, characterize when γ2s(G) = γds(G)?

2. Analogously, define an inverse secure 2-domination number γ−1
2s (G) and

find some bounds and characterization. Also, characterize when γ−1
2s (G) =

γ−1
ds (G)?

5.2. Unsecure double domination (or, Self double domination). A
DD-set Dd is an unsecure double dominating (UDD) set in a connected graph G.
If for every vertex u ∈ V − Dd, there exists v ∈ Dd is adjacent to u such that
(Dd − {v}) ∪ {u} is not a DD-set of G. An unsecure double domination number
γuds(G) is the minimum cardinality of a UDD-set of G.

1. Find γuds(G) for specific families of graphs. Also, obtain some bounds
and characterization of γuds(G)

2. Compare γuds(G) with other domination related parameters.
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