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SOME RESULTS FOR INTERPOLATIVE CARISTI
MAPPINGS IN A NEW EXTENSION OF Mz—METRIC
SPACES

Nilay Gursac and Isa Yildirim

ABSTRACT. In this study, we express the concept of M} —metric space, which is
a combination of M —metric space and b—metric spaces, and this space is the
generalization of both spaces. We present some interpolative type contraction
mappings and prove fixed point theorems in such spaces. Finally, we give some
examples for such mappings and spaces.

1. Introduction and preliminaries

Metric spaces are one of the spaces where fixed point theory has been studied
most intensively. In recent years, many authors have defined different general-
izations of metric spaces and have worked on them on very different aspects of
fixed point theory. Some of the generalizations of the metric space are b—metric,
extended b—metric, M —metric and extended Mjp—metric spaces.

Now we will give the definitions of the spaces expressed above, respectively, as
follows.

The concept of b—metric space, which is a generalization of metric spaces,
was defined by Bakhtin [8] in 1989. Since then, many authors have examined the
fixed points of different transformation classes on these spaces and have proven
different theorems for different iteration methods using the convexity of this space
(see [9], [15], [16], [20], [22]).
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62 GURSAC AND YILDIRIM

DEFINITION 1.1. /8] Assume that A # 0, b€ R andb>1. The py: A x A —
R mapping that satisfies the following conditions is called a b—metric and the pair
(A, pp) is called b—metric space. If for all u,v,w € A,

(i) po (u,0) = 0 4= u = v;

(it) po (u,v) = po (v,u);

(m) Pb (u’ w) <b [Pb (u’ U) + Pb (’U7 w)} :

After, Kamran et al. [16] introduced extended b—metric spaces which is a
generalization of the concept of b—metric space. They also proved some fixed point
theorems for mappings defined on such spaces.

DEFINITION 1.2. [16] Assume that A # 0 and ¢ : A x A — [1,00). The
po t A X A — [0,00) mapping that satisfies the following conditions is called an
extended b—metric and the pair (A, py) is said to be an extended b—metric space.
If for all u,v,w € A,

(1) py (u,v) =0 <= u = v;

(i) py (u,v) = py (v, u);

(iii) pp (1y0) < 2 (u,0) [ (1,0) + o (v, 0)]

In 2019, Aydi et al. [7] replaced the modified triangle inequality with a func-
tional triangle inequality. And, they defined the notion of extended b—metric spaces
as follows. They also established some fixed point results for nonlinear contractive
mappings in such spaces.

DEFINITION 1.3. [7] Assume that A # 0 and ¢ : A> — [1,00). The p, :
A x A — [0,00) mapping that satisfies the following conditions is called a new
extended b—metric and the pair (A,p,) is said to be a new extended b—metric
space. If for all u,v,w € A,

(i) p (,0) = 0 = u = v;

(it) po (u,v) = py (v, u);

(iii) py (U, w) < @ (u, v, w) [py (u,v) + py (v, w)] .

Very recetly, Asadi [4] first introduced the concept of M —metric space which
includes the partial metric space.

DEFINITION 1.4. [4] Assume that A # 0. The m : A x A — R™ mapping that
satisfies the following conditions is called an M —metric and the pair (A, m) is said
to be an M —metric space. If for all u,v,w € A,

(i) m (u,u) =m (v,v) =m(u,v) <= u =0,

(1) myy < m(u,v),

(#ii) m (u,v) = m(v,u),

(iv) m (u,v) — Myy < (M (U, W) — M) + (M (W, V) — Mayy)-

Motivated by above studies Ozgur et al. [19] introduce the notion of an ex-
tended Mp—metric space by using extended b—metric space and M —metric space.
They also proved some widely known fixed point theorems such as the Banach’s
fixed-point theorem, the Kannan’s fixed-point theorem and the Chatterjea’s fixed-
point theorem.
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DEFINITION 1.5. [19] Assume that A # 0 and ¢ : A* — [1,00). The m,, :
A x A — RT mapping that satisfies the following conditions is called an extended
My—metric and the pair (A, my) is said to be an extended My—metric space. If for
all u,v,w € A,

(i) my (u,u) = my (u,v) =my, (v,v) <= u="1,

(1) Mgu,p < My (U, ),

(tii) my (u,v) = my (v,u) ,

(m‘P (U” ’LU) - m‘Pu,w)

+ <m¢ (w,v) — m¢w,v>

Considering the different spaces defined above, many authors have obtained
some widely known fixed point theorems and many fixed point results for different

mapping classes (see [1], [2], [3], [4], [5], [6], [10], [11], [12], [13], [14], [16], [17],
(18], [21]).

(“}) m‘P ('U/, U) - m‘Pu,U < ¥ (u7 ’U)

2. Main results

Based on the spaces given in the Introduction and Preliminaries section and the
studies carried out, we defined a space that we called a new extended M;—metric
space as follows. After, we give the definition of interpolative Caristi type contrac-
tive mapping using concept of interpolative type mappings in such spaces. Finally,
we prove some fixed point theorems in this metric space.

DEFINITION 2.1. Assume that A # 0 and ¢ : A*> — [1,00). The my, : A> —
[1,00) mapping that satisfies the following conditions is called a new extended
My—metric and the pair (A,my) is said to be a new extended My—metric space
(shortly "neMyms”). If for all u,v,w € A,

(1) my, (u,u) = my, (v,v) = my, (u,v) <= u =",

(2) mﬁ"u,v < ms& (U’? U);

(3) me (ua U) = My (Uv U)a

(4) my (U, U) - m@u,u g "2 (uv v, ’LU) |:m<,0 (’U,, w) - mﬁau,w + me (Uv ’LU) - m‘Pw,u:I .

REMARK 2.1. If we take ¢ (u,v,w) = ¢ (u,v), Definition 2.1 coincides with

Definition 1.5. Moreover, taking ¢ (u,v,w) = 1, it reduces to the definition of an
M —metric space.

EXAMPLE 2.1. Let A = C([0,1],R) be the set of all continuous real valued
functions on [0,1]. We suppose that the functions ¢ : A*> — [1,00) and my, : A* —
[0,00) defined by

i (F(w), g(w), hw)) = [£(w)| + lg(w)] + [h(w)| +3
and

me (f(w), gw)) = sup {|f(w) = gw)* : w € [0,1]}
Then (A, my) is a neMyms.

Some topological notions on a neM,ms are given below.
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EXAMPLE 2.2. A = {2,4,6} and the function ¢ : A3 — [1,00) be defined by
ou,v,w)=u+v+w
for all u,v € A.Let us define the function my : A? — [0,00) as

m(2,2) = 1,m(4,4)=2,m(6,6)=3
m(2,4) = m(4,2) =4,

m(2,6) = m(6,2) =5,

m (4,6) m (6,4) = 10,

for all u,v € A.Then my, is a neMyms. But it is not an M—metric or partial
metric. Indeed, for u=4,v =6 and w = 2, we have
my (4,6) —my, o =8 < [(mv (4,2) — mipm) + (mip (2,6) — mwyﬁ)] =7
and
my, (4,6) = 10 < my, (4,2) + my (2,6) —my, (6,6) = 8.
This is a contradiction. Thus the condition of partial metric spaces and the
condition (4) given in Definition 1.4 are not satisfied.

DEFINITION 2.2. Let (A,my) be a neMyms. Then
(a) a sequence {u,} in A converges to a point u <

Jim my (un,u) = my,, ., =0,

(b) a sequence {u,} in A is said to be m,— Cauchy sequence if

lim me (uma ’LLn) T My un 2

n,m— oo
and
lim Mg, . —mg, .
R 00 motn moun

exist and finite;
¢) a neMyms is said to be m,—complete if every m,— Cauchy sequence {u,
® ®
converges to a point u such that

lim mg (un, u) —me,, , =0

n—oo
and
nll)II;o MWun,u - m@14n,u = O

LEMMA 2.1. Let (A,my) be a neMyms. If the sequence {u,} in A converges
two point u and v with u # v, then we have my, (u,v) —my,, , = 0.

PRrOOF. Let u, — u and u,, — v with u # v. Then we obtain

nl;ngo M (Un, u) — my, =0
and

nh_}rrgo My (Un,v) —my,  =0.

From the conditions (3) and (4) in Definition 2.1, we get

my (u,v) — My, , <P (u,v,w) [mw (u, up) — My, T My (Un,v) — mwun,u}
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and

. . lim My (U, Uy) —m
o < n—oo My s Un Pu,u
Jim [ () = g ] < B ) | e et e

Using the condition (2) given in Definition 2.1, we get my, (u,v) —my,, , =0. O

From the proof of the above lemma, it is clearly seen that the limit of a sequence
is not to unique.

LEMMA 2.2. Let (A, m,) be a neMyms such that my is continuous. Then every
convergent sequence has a unique limit.

LEMMA 2.3. Suppose that (A, my) is a neMyms, the mapping m,, is continuous
and L : A — A is a mapping. If there exists k € [0,1) such that

(2.1) my, (Lu, Lv) < kmy, (u,v)

for all u,v € A, then the sequence {uy,} is defined by upt1 = Luy. If u, — w as
n — oo, then Lu, — Lw asn — oo.

Proor. Taking m (Lu,, Lw) = 0, then my,, = 0. From mg,,
my, (Luy, Lw) , we obtain

ng

my (Ltg, Lw) —my,, ., —0asn— oo

which implies that Lu,, — Lw as n — oo.

So, we may assume that m, (Lu,, Lw) > 0, from (2.1) we have m,, (Luy,, Lw) <
My, (Un,w). So there are the following two steps:

Step 1: If my, (w,w) < my, (Un,uy), then it is easy to see that my, (u,, u,) —
0, which implies that m, (w,w) = 0 and since m,, (Lw, Lw) < m, (w,w) = 0 we
deduce that

my (Lw, Lw) = my, (w,w) = 0 and my, (uyn, w) — 0,
on the other words we have
My (L, Lw) < my (Un, w) — 0.

Hence, my, (Luy,, Lw) —mg,, ., — 0 and thus Lu, — Lw.

Step 2: If m, (w,w) = my, (un,uy), and once again it is easy to see that
My (Un,up) — 0, which implies that m,, ., — 0 and since mg, (Lu,, Lw) <
My (U, w) — 0 then we have my, (Luy,, Lw) —my,, . — 0 and thus Lu, — Lw
as desired. 0

DEFINITION 2.3. Suppose that (A,my) is a neMyms and L : A — A is a
mapping. This mapping is called
a) interpolative Kannan-Caristi contractive mapping (shortly "IKCCM”) if
there exists a function g : A — [0,00) and n € (0,1) such that
my, (Lu, Lv) < [g (u) — g (Lu)]".m(u, Lu)"m, (v, Lv)" ™"

for allu,v € A — Fiz (L),
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b) interpolative Reich-Caristi contractive mapping (shortly "IRCCM”) if there
exists a function g : A — [0,00) and w,n € (0,1) such that

my (Lu, Lv) < [g(u) — g (Lu)]w+".m¢ (u,v)".my, (u, Lu)".my, (v, )2

for allu,v € A— Fiz (L).
¢) interpolative Jaggi-Caristi contractive mapping (shortly "IJCCM?”) if there
exists a function g : A — [0,00) and w € (0,1) such that

me (u, Lu) my, (v, Lv)] 1-w

my (Lu, Lv) < [g (u) — g (Lu)]" . my (u,v)". [ g (4, 0)

for allu,v € A — Fiz (L).
d) interpolative Das—Gupta-Caristi contractive mapping (shortly "IDGCCM”)
if there exists a function g : A — [0,00) and w € (0,1) such that

(1 4+ my, (u, Lu)) .my (v, Lv)] T

my (Lu, Lv) < [g (u) — g (Lu)]" . my (u,v)". [ 1+ my, (u,0)

for allu,v € A — Fiz (L).

EXAMPLE 2.3. Let A = {2,4,6} and the mapping m, : A — [0, 00)

m(0,0) 1,my(2,2) = 2,my(4,4) = 3
me(0,2) = my(2,0) =4,
me(0,4) = my(4,0) =5,
my(2,4) = my(4,2) =6,

Assume that the mapping L : A — A L(u) =4 —u, g : A — Ajg(u) = 3u
and n = 2/3. Then the mapping L is an IKCCM. For uw = 0, v = 4 and Yu,v €
A — Fiz(L),

my (L(0), L(4)) < [g(0) — g (L(0)))".m(0, L(0))"my (4, L(4))' ™"
my (4,0) < [0 —12/%.m,(0,4)**m,, (4,0) 7%
my (4,0) < (—=12).my(0,4)**m,, (4,0)"/%.

LEMMA 2.4. Let (A,my) be a neMyms and {u,} be a sequence such that
My (Un, Unt1) < kMg (Un—1,uy,) for alln > 2, where k € (0,1) and
limy, 1m—yo0 1 (Un, Unt1, Um) < %, then {u,} is my,—Cauchy sequence in A.

PRrROOF. From the inequality in the expression of the lemma, we write

My (U, Unt1) < kmy (Up—1,uy)

~
< kaga (un—2; un—l)

k"_lmw (ug,uz) .

N
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Forallne Nand p=1,2,..., we get

M (Un, Untp) — Mt it <0 (Uny Ung1, Unp) [Mg (Un, Ung1) — Mo i
+my, (Unt1, Untp) — msounﬂ,unﬂ,]'
Then
M (Unt1, Untp) — m@un+17un+,§77 (Unt15 Unt2, Untp) [Ny (Unt1, Unt2) — Moty 1 2
+my (Uns2, Untp) — mwun+2,un+p]

and

M (Unt2, Untp) — Mo g un i, ST (Un+2, Unt 3, Untp) [My (Unt2, Unts) — Mot 43

+my, (Un+s3, un+p) - mwun+3,un+p]

This implies that
M (Un, Untp) — My ST (Un, Unt15 Untp) M (U, Uny1) +
N (Un, Uny1, un+p) N (Unt1, Uy, un+p) M (Un+1, Unt2)
+1 (Uns Un41, Unp) 1 (Unt15 Unt2, Unsp) -
N (Unt2, Un+3; Untp) M (Unt2, Unt3) + ...
+ 1 (Uny Un 1, Ungp) - -1 (Untp—2, Ungp—1, Untp)
[my (Untp—2, Untp—1) + M (Untp—1, Untp)] -

From above inequality, we get

M (Un, Untp) — Mo, i

n+p—1 T
< Z kr71 H n (u37 Us+1, un,+p) mey (Ul, u2) .
r=n s=1
We suppose that 6;"“’) = ki1 ngln(us,u5+1,un+p) for all j € N. Then for
any p=1,2,...,
+
. 6£LT-L1-1P) o . k" HZLI n (usa Us41, un+p)
lim —/—— = lim T
n— oo 5£Ln,+P) n—oo kn— Hs:l n (us; Ust1, un+p)

= lim kv (Upt1, Unt2, Untp) < L.
n—oo

Using ratio test, we obtain

11m m‘P (un’ un+p) - m@un,un+p

n— o0
n+p—1 r
. Z -1
< hm kT‘ H n (u57 u5+17 un+p) mCP (Ul, u2)
n— 00
r=n s=1
= 0.

Therefore {u,} is m,—Cauchy sequence in A. O
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THEOREM 2.1. Let (A,my,) be a complete neMyms such that my, is continuous
and L be an IKCCM. Let also the sequence {u,} be the Picard iteration generated by
uo € A Iflimy, oo M (Un,y Unt1,Um) 15 finite for some ug € A, then the sequence
{un} converges to u € A. Also if lim, oo 7 (u, un, Lu) is finite then u is a fived
point of L in A.

ProoF. If u,, = u,41 for some n > 0 then L has a fixed point in A. So we
suppose that m, (up—1, Luy—1) > 0 for all n € N. Taking u = u,_1 and v = uy,,
we have

n 1-n

mey (tns Uny1) < [9 (Un—1) — g (un)] -mga(un—la un)n.m@ (U, Uny1)

which implies that

n

mnp (una un+1)n < [g (unfl) —4g (un)] 'mgp(unflv un)n~

Then
(2.2) M (1t 1) < [9 (1) — 9 ()] s (21, 0)

Let’s take my, (tn—1,un) =@, for all n € N. Then from (2.2) we get

(2.3) 0 < ﬁ:1<wmwn—gwm

Thus for all [ € N, we have

(2.4) 2L < g (uwimr) — g ()] = g (o) — g (w).

From (2.3), we know that the sequence {g (u,)}, ¢y is @ monotone decreasing
and bounded below. Then it is convergent. Let ¢ be a limit of this sequence. Thus
using (2.4) we have

(o)

Pit+1 .
> < g (ug) — lim g (w) = g (ug) —t < oo
2 ©; l— 00
=1

That is lim;_ % = 0 . Since limy, ;m—oo 7 (Un, Unt+1,Um) is finite, there
exists some k € (0,1) such that limy, 1—y00 17 (Un, Un41, Um) < % For this k € (0,1)
there exists ng € N such that ;11 < ky; for all i > ng. From Lemma 2.4, we get
that {u,} is a m,-Cauchy sequence in A. From Theorem 2.1, we know that (A, m,,)
is complete. Therefore there exists some v € A such that w,, — u as n — co. Next
we will show that Lu = u. By Lemma 2.3, we obtain

Jim mg (un,u) —mg,, ., =0

= lim mg (upi1,0) =me, .,

= lim mg (Lun,u) = mep,, .,

= mLP(Lu’ u) T Meryu:
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Hence we can find
m‘p (Lu’ u) = m‘PLu,u .
Since my, (Lu, Lv) < kmy, (u,v) for all u,v € A, we obtain
My, o =My (Un,Up) < kMg (Un—1,Un—1) < ... <E"my, (ug, uo) .

If we take the limit of above inequality, we get that My
that

= 0, which implies

un ,Lun

my (Lu,u) =my,, <My, ., =0.
Then my, (Lu, u) = my, (u,u) = my, (Lu, Lu) and Lu = u. Now, we will show
that the uniqueness of the fixed point. Let u be a fixed point of L. Hence
my (u,u) = my (Lu, Lu)
< kmy (u,u)
< my (u,u) since k € [0,1).

From the above inequality, we have m, (u, ) = 0. Now let’s assume the opposite.
That is, L has two fixed points w # n € A such that Lw = w and Lv = 7. Thus,

my (w,n) = my, (Lw, Lv) < kmy, (w,n) < my (w,n),

which implies that m, (w,n) = 0, and hence w = 7. Therefore, L has a unique
fixed point w € A such that m,, (w, w) = 0 as desired. O

THEOREM 2.2. Let (A, my) be a complete neMyms such that m,, is continuous
and L be an IRCCM. Let also the sequence {uy} be the Picard iteration generated by
ug € Ao If limy, im—yo0 M (Un, Unt1, Um) @S finite for some ug € A, then the sequence
{un} converges tou € A.Also if limy,_, 00 1 (u, uy, Lu) is finite then u is a fized point
of L in A.

ProoF. If u,, = u,41 for some n > 0 then L has a fixed point in A. We assume
that my, (up—1, Luy,—1) > 0 for all n € N. For v = u,—; and v = v,,, we have

w+n

my (Un, Unt1) < [9 (Un—l) -9 (Un)] 'msa(un—la un)w

'mtp (un—h un)nmga (u’ru un+1)1_w_n

and

w+n w+n

m«p(un—h un)

which implies that

(2.5) My (tn, uny1) < [ (Un—1) — g (un)] M (Up—1, Up) -
Let us denote my, (un—1,un) = fr for all n € N. Then from (2.5) we obtain

fr}“ <g(up—1)—g(uy) foralln > 1.

Using a similar method as in Theorem 2.1, we can show that the rest of the
proof. O

0<
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THEOREM 2.3. Let (A, m,) be a complete neMyms such that m,, is continuous
and L be an IJCCM. Let also the sequence {u,} be the Picard iteration generated by
uo € A Iflimy, ;oo M (Uny Unt1,Um) 15 finite for some ug € A, then the sequence
{un} converges to u € A. Also if lim, oo 1 (u, un, Lu) is finite then u is a fived
point of L in A.

PrOOF. If we take u,, = u,y1 for some n > 0, we have the mapping L has a
fixed point in A. Now we assume that mg, (up—1, Lu,—1) > 0 for all n € N. Then
U= Up_1 and v = Uy,

mg& (’Lbn, unJrl) < [g (unfl) —4g (un)]w~mtp(un71a un)w

mtp (unfh un) -m4p (’LLn, unJrl) o

mey (un—la un)

From the above inequality, we get

My (umun+1)w < [9 (Un—l) -9 (Un)]w~mgo(un—1aun)w
and
(26) mey (una un+1) < [g (unfl) -9 (un)] M (unfla un) .

Let us denote my, (un—1,u,) = fy for all n € N. Using (2.6), we have

0< fT}H < g (up—1) —g(uy) foralln > 1.
n
Proceeding in a similar way as in Theorem 2.1, we see that {u,} is convergent to
u. The rest of the proof is similar to that of Theorem 2.1. O

THEOREM 2.4. Let (A, m,) be a complete neMyms such that m, is continuous
and L be an IDGCCM. Let also the sequence {uy,} be the Picard iteration gener-
ated by up € A If limy, p—soo M (Un, Unt1, Um,) @8 finite for some ug € A, then the
sequence {un} converges to u € A. Also if imy,_, oo (U, un, Lu) is finite then u is
a fized point of L in A.

PRrOOF. If we take u,, = u,y1 for some n > 0, we have the mapping L has a
fixed point in A. Now we assume that my, (un—1, Lun—1) > 0 for all n € N. Then
U= Up_1 and v = Uy,

My (Um un+1) < [g (un—l) -9 (un)}w'mw(un—l, un)w

1—w

(14 iy (11, ) (1, U 1)
1+ my (’U,n,h un)

which implies that
(2.7) M (U Un41)" < [g (un—1) — g (Un)]w~mcp(un—17 un)®.
Let us denote my, (un—1,un) = fp for all n € N. Using (2.7), we have

0<Imt o

fo
Proceeding in a similar way as in Theorem 2.1 we see that {u,} is convergent to
u. The rest of the proof is similar to that of Theorem 2.1. O

g (un—1) — g (uy,) forall n > 1.
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