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A UNIFIED DIFFERENCE METHOD FOR NUMERICAL
SOLUTION OF THE BOUNDARY VALUE PROBLEMS
IN ORDINARY DIFFERENTIAL EQUATIONS OF THE

ORDER FOUR

Pramod Kumar Pandey

Abstract. In this article we propose a unified difference method for the nu-

merical solution for the fourth order boundary value problems. The boundary
problem is transformed into an equivalent system of boundary value problems.

We discuss convergence analysis of the proposed method. Numerical experi-
ments are performed to approve the efficiency and accuracy of the proposed

method.

1. Introduction

Ordinary differential equations and corresponding boundary value problems
are used to describe many physical phenomena. A fourth order differential equa-
tion and corresponding BVPshave a very important role in study of the theory of
shells in natural sciences. Any literary work on the application of a fourth order
differential equation and corresponding BVPs are there in studies of theory and
application of elasticity [1–3], deformation of structures [4], deformation of elastic
membrane [5] and effects of soil settlement [6].

In this article we consider following fourth order BVPs,

(1.1) y(4)(x) = αy(3)(x) + f(x, y, y′, y′′, y(3)), a < x < b,
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subject to the boundary conditions

y(a) = β, y(b) = γ

y′′(a) = β0, y′′(b) = γ0

where α, β, γ, β0 and γ0 are real constant and f(x, y, y′, y′′, y(3)) is continuous in
domain of definition of the problem.

For the approximate numerical solution of fourth order boundary value prob-
lems (1.1), a variety of methods have been introduced. However, numerical methods
are available for solving problem (1.1) directly without reducing to an equivalent
lower order system of differential equations. These existing methods for solving
problem (1.1) employ spline methods [7], finite difference methods [8], finite ele-
ment methods [9] and references therein.

We can find the theorems on uniqueness, the existence and convergence of
the solution of the problem (1.1) in [10,11]. We have assumed the existence and
uniqueness of the solution of the problem (1.1). So we will not consider any spe-
cific assumption on forcing function f(x, y, y′, y′′, y(3)) to ensure the existence and
uniqueness of the solution to the problem (1.1).

The emphasis in this article will be on the development of an indirect method
for the numerical solution of the fourth order boundary value problem. Thus, we
will reduce the problem (1.1) to an equivalent system of second order ODEs. We
will develop and employ unified difference method to solve the problem (1.1).

We have presented our work in this article as follows. In the next section we
developed a unified difference method. In Section 3, we have discussed convergence
of the proposed method under appropriate condition. The application of the pro-
posed method to the test problems and illustrative numerical results so produced
to show the efficiency in Section 4. Discussion and conclusion on the performance
of the proposed method are presented in Section 5.

2. Unified difference method

In this section we propose unified difference method for the numerical solution
of the problem (1.1). Let us introduce an intermediate variable u(x) such that

(2.1) u(x) = y′′(x)

and the boundary conditions are

y(a) = β, y(b) = γ.

This intermediate variable enable us to transform problem (1.1) into following an
equivalent problem

(2.2) u′′(x)− αu′(x) = f(x, y(x), y′(x), u(x), u′(x)).
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and transformed boundary conditions are

u(a) = β0 and u(b) = γ0.

Thus, problem (1.1) is reduced into an equivalent coupled system of differential
equations (2.1) - (2.2) subject to boundary and transformed boundary conditions.

We substitute domain [a, b] by a discrete set of points and we wish to determine
the numerical solution of the problem at these discrete points. Thus we define N
finite numbers of a = x0 < x1 < x2...... < xN+1 = b nodal points in the domain of
[a,b] using a uniform step length h such that xi = a+ih, i = 0, 1, 2, ....., N+1. We
wish to determine the numerical approximation of the solution y(x) of the problem
(1) at the nodal points xi, i = 1, 2, ....., N . We denote the numerical approxima-
tion of y(x) at node x = xi as yi, i = 1, 2, .., N . Let us denote fi as the approxima-
tion of the theoretical value of the source function f(x, y(x), y′(x), v(x), v′(x)) at
node x = xi, i = 0, 1, 2, ....., N + 1 and similarly we have defined other notations
in the present article. Thus, the finite difference method reduces the problems (2.1)
- (2.2) to the following discrete problems at node x = xi,

(2.3) y′′i = ui,

u′′
i − αu′

i = fi, i = 0, 1, · · · , N + 1.

subject to the boundary conditions

y0 = β, yN+1 = γ, u0 = β0 and uN+1 = γ0

Let define following approximations,

(2.4) y′i =
yi+1 − yi−1

2h

u′
i =

ui+1 − ui−1

2h

and f i = f(xi, yi, y
′
i, ui, u

′
i).

Hence, following the ideas in [12–14], we propose following unified difference method
for the numerical solution of the (1.1),

(2.5) yi+1 − 2yi + yi−1 = h2ui

ui+1 − (1 + exp(αh))ui + exp(αh)ui−1 =
h2

2
(1 + exp(αh))f i.

Thus we have obtained at each nodal point xi, i = 1, 2, ...., N the system of equa-
tions (2.5). The solution of the system of equations (2.5) is the approximate nu-
merical solution of the problem (1.1).

3. Convergence analysis

We will consider following test equation for convergence analysis of the proposed
method (2.5).

(3.1) y(4) = αy(3) + f(x, y, y′, y′′, y(3)), a < x < b.
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subject to the boundary conditions y(a) = β, y(b) = γ, y′′(a) = β0 and y′′(b) = γ0.
Let us define Yi, yi, Ui and ui are respectively exact and approximate solution of
equations in (2.5). Define

Fi = f(xi, Yi, Y
′
i , Ui, U

′
i) and fi = f(xi, yi, y

′
i, ui, u

′
i).

Hence we linearize Fi and

Fi − fi = (Yi − yi)Gi + (Y ′
i − y′i)Ġi + (Ui − ui)Hi + (U ′

i − u′
i)Ḣi

where

Gi = (
∂f

∂y
)i, Ġi = (

∂f

∂y′
)i, Hi = (

∂f

∂u
)i and Ḣi = (

∂f

∂u′ )i.

Define error term in approximate solution of system of equations (2.5),

ϵi = Yi − yi and δi = Ui − ui, i = 1, 2, · · · , N.

Hence,

(3.2) F i − f i = ϵiGi +
1

2h
(ϵi+1 − ϵi−1)Ġi + δiHi +

1

2h
(δi+1 − δi−1)Ḣi

and

(3.3) ϵi+1 − 2ϵi + ϵi−1 = h2δi + Ti

δi+1 − (1 + exp(αh))δi + exp(αh)δi−1 =
h2

2
(1 + exp(αh))(F i − f i) + T i.

where Ti and Ṫi are

Ti =
h4

12
y
(4)
i

T i =
h4

12
(y

(4)
i +2αy

(3)
i +α3y′i− (1+exp(hα))(y

(3)
i Ġi+u

(3)
i Ḣi)), i = 1, 2, · · · , N.

Using (3.2) in (3.3) and boundary conditions, we have following error equation,

(3.4) JE = T

where

J =

 A1,1

... A1,2

· · · · · · · · ·

A2,1

... A2,2


2N×2N

,

E = (ϵ1, · · · , ϵN , δ1, · · · , δN )T ,

T = (T1, · · · , TN , T 1, · · · , TN )T .

Further,

A1,1 =


−2 1 0
1 −2 1

. . .
. . .

0 1 −2


N×N

,A1,2 =


−h2 0

−h2

. . .

0 −h2


N×N

,
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A2,1 = −h

4
(1 + exp(αh))


2hG1 Ġ1 0

−Ġ2 2hG2 Ġ2

. . .
. . .

0 −ĠN−1 2hGN


N×N

,

and A2,2 = A+B,

A =


−(1 + exp(αh)) 1 0

exp(αh) −(1 + exp(αh)) 1
. . .

. . .

0 exp(αh) −(1 + exp(αh))


N×N

,

B = −h

4
(1 + exp(αh))


2hH1 Ḣ1 0

−Ḣ2 2hH2 Ḣ2

. . .
. . .

0 −ḢN−1 2hHN


N×N

.

Let

G = max
1⩽i⩽N

|Gi|, Ġ = max
1⩽i⩽N

|Ġi|, H = max
1⩽i⩽N

|Hi|, Ḣ = max
1⩽i⩽N

|Ḣi|

So it is easy to calculate ||A2,1|| and ||B||. Matrix A1,1 is invertible [15]. We

determined A−1 = (al,m) explicitly where ,

al,m =

{
(1−exp(lhα))(exp(−Nhα)−exp((1−m)hα))

(exp(hα)−1)(exp(−Nhα)−exp(hα)) , l ⩽ m
(1−exp(mhα))(exp(−(N−l)hα)−exp(hα))

(exp(hα)−1)(exp(−Nhα)−exp(hα)) , l ⩾ m

It is easy to see that that A2,2 is invertible [16]. Let us assume ||A−1B|| < 1 [17]

then ||A−1
2,2|| ⩽

||A−1||
1−||A−1B|| . Let us define

V = ||A1,2A
−1
2,2||+ 1.0 and V = ||A2,1A

−1
1,1||+ 1.0

and assume V V < V + V then J is invertible [18]. Moreover,

(3.5) ||J−1|| ⩽
||A−1

1,1||V V

1− ||A−1B|| − (V − 1)||A1,2||||A−1||
But

(3.6) ||A−1
1,1|| ⩽

(b− a)2

8h2

Therefore, from (3.5) and (3.6) we have,

(3.7) ||J−1|| ⩽ (b− a)2V V

8(1− ||A−1B|| − (V − 1)||A1,2||||A−1||)h2

Let

M = max{y(4)i , (y
(4)
i +2αy

(3)
i +α3y′i−(1+exp(hα))(y

(3)
i Ġi+u

(3)
i Ḣi))}, for all x in [a,b].
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Thus

(3.8) ||T|| ⩽ h4

12
M

From (3.4), (3.7) and (3.8), we obtained

(3.9) ||E|| ⩽ h2(b− a)2V VM

96(1− ||A−1B|| − (V − 1)||A1,2||||A−1||)
Thus from (3.9), we find ||E|| is bounded and ||E|| tends to zero as h −→ 0. So we
conclude that proposed unified difference method (2.5) converge and the order of
the convergence is at least O(h2).

4. Numerical results

To test the computational efficiency of our proposed method, we have consid-
ered two model problems. In each model problem, we took a uniform step size h.
In Table 1 - Table 2, we have shown EMY the maximum absolute error in the
solution y(x) of the problem (1.1) and EMU the maximum absolute error in the
second derivative of solution, i.e. y′′(x) = u(x) of the problems (1.1) for different
values of N. In computation following formulas were used,

EMY = max
1⩽i⩽N

|y(xi)− yi|.

EMU = max
1⩽i⩽N

|u(xi)− ui|.

We have used Gausss-Seidel and Newton-Raphson iteration method to solve
respectively the system of linear and nonlinear equations arised from equation (6).
All computations were performed on a Windows 7 Home Basic operating system in
the GNU FORTRAN environment version 99 compiler (2.95 of gcc) on Intel Core
i3-2330M, 2.20 Ghz PC. The solutions are computed on N nodes and iteration is
continued until either the maximum difference between two successive iterates is
less than 10−10 or the number of iteration reached 103.

Problem 1. The model non-linear problem given by

y(4)(x) = αy(3)(x) + y(x)(y′(x) + y′′(x) + y(3)(x)) + f(x), 0 < x < 1

subject to boundary conditions

y(0) = 0 , y(1) = exp(α)

y′′(0) = α2 and y′′(1) = α2 exp(α).

where f(x) is calculated so that the analytical solution of the problem is
y(x) = exp(αx). The EMY and EMU computed by method (2.5) for different
values of N and α are presented in Table 1.

Problem 2. The model non-linear problem given by

y(4)(x) = αy(3)(x) + y(x)(y(3)(x) + 1.0) + x2(y′′(x))2 + f(x), 0 < x < 1
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subject to boundary conditions

y(0) = exp(A) , y(1) = exp(α+A)

y′′(0) = α2 exp(A) and y′′(1) = α2 exp(α+A).

where f(x) is calculated so that the analytical solution of the problem is y(x) =
exp(αx+A). The EMY and EMU computed by method (2.5) for different values
of N, α and A are presented in Table 2.

Table 1. Maximum absolute error (Problem 1).

Maximum absolute error

α Error N = 16 N = 32 N = 64 N = 128

1.25 EMY .33450127(-3) .67234039(-4) .23841858(-6) .23841858(-6)

EMU .15315562(-2) .34160912(-3) .43302774(-4) .41425228(-5)

-1.25EMY .42498112(-4) .84638596(-5) .59604645(-7) .59604645(-7)

EMU .12620911(-3) .25954098(-4) .22724271(-6) .61839819(-6)

1.75 EMY .22068024(-2) .52833557(-3) .30755997(-4) .47683716(-6)

EMU .13934404(-1) .33753216(-2) .46448410(-3) .82701445(-5)

-1.75EMY .13494492(-3) .31858683(-4) .65565109(-6) .59604645(-7)

EMU .39522350(-3) .89570880(-4) .23879111(-5) .78603625(-6)

Table 2. Maximum absolute error (Problem 2).

Maximum absolute error

α,A Error N = 16 N = 32 N = 64 N = 128

1.75,EMY .15602112(-1) .37746429(-2) .52261353(-3) .38146973(-5)

2.0 EMU .96046448(-1) .22895813(-1) .49972534(-2) .57220459(-3)

1.75 EMY .15324354(-3) .36269426(-4) .17881393(-6) .59604645(-7)

-2.0 EMU .20349026(-3) .47326088(-4) .47683716(-6) .23841858(-6)

-1.75EMY .23412704(-3) .73432922(-4) .47683716(-5) .47683716(-6)

2.0 EMU .11478424(-1) .28619766(-2) .59127808(-3) .19073486(-5)

-1.75EMY .22955239(-4) .54612756(-5) .12665987(-6) .74505806(-8)

-2.0 EMU .41127205(-5) .50663948(-6) .29802322(-7) .29802322(-7)

Numerical results, for example 1 for different values of N and α are presented
in table 1. The maximum absolute errors in solution decreases with decrease in
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step size h and the order of accuracy in the result is at least quadratic. It observed
from the result, for example 2, the accuracy depends on coefficient of the solution
of the problem. Clearly the computational accuracy of the method depends on the
constructed solution of the problem.
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