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Arega

Abstract. Let k be a field with characteristic zero, R be the ring k[x1, · · · , xn],

and I be a monomial ideal of R. We study properties of the largest reduced
submodules, R(M) of finite dimensional polynomial modules. We also intro-

duce a method to calculate generators of R(M) and we classify R(M), into

four types, for which Gorenstein and almost Gorenstein rings can characterize
some of them.

1. Introduction

Reduced rings play an important role in algebra. A reduced module as a
generalization of a reduced ring was first defined by Lee and Zhou in [10]. Reduced
modules have since been studied by [9,11,12] alongside others. A module M is
reduced over a commutative ring S if a2m = 0 implies am = 0 for all a ∈ S,m ∈ M .
Among other applications, reduced modules form a full subcategory of R-Mod on
which the I-torsion functor ΓI is representable, i.e., if M is an I-reduced R-module,
then ΓI(M) ∼= Hom(R/I,M), see [12]. Let k be a field and R := k[x1, · · · , xn].
Consider the full subcategory, C of R-Mod consisting of R-modules of the form
M := R/I, with dimk(R/I) < ∞, Cred contains all reduced submodules of M ∈ C
and The largest reduced submodule of M is denoted by R(M), [2]. The connection
between reduced submodules, in particular, R(M) and Socle of a module has also
been studied in [2], where M ∈ C. The paper is organize as follows: In Section 2 we
study some properties of R(M): we show that Cred is abelian full subcategory of
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R-Mod (Theorem 2.1) we also prove that the class of ideals I of R forms Oka family,
where R(M) = J/I (Theorem 2.2). Finally, we show that Koszul cohomologies are
reduced modules. In Section 3 for M := k[x, y]/I as k[x, y]-module we introduce a
general formula to calculate generators of R(M) (Theorem 3.1) and classify R(M)
into four types, where type 4 should be subdivided further into two as type 4A
and 4B. The classification is mainly based on a combinatorial object called Young
diagram, which is defined as a collection of boxes or cells arranged in left-justified
rows, with a (weakly) decreasing number of boxes in each row, [7]. We also managed
to get a general algebraic formula for some of the types (type 1, 2, and 3). However,
couldn’t find a general algebraic formula for type 4A and 4B. So, the authors
suspected that type 4A and type 4B should be divided further so that we able to
determine a general algebraic formula and characterize them. We left this as an
open problem. R(M) = J/I is Type 1, type 2, type 3 if J is x-tight and y-tight
ideal, principal ideal (generated by a single monomial), pure power ideal (complete
intersection) respectively, see Theorem 3.2. In Theorem 3.3 it has been shown that
R(M) = J/I is type 4A and type 4B if J is either x-tight or y-tight and neither
x-tight nor y-tight ideal of R, respectively. In Section 4 we characterize some types
of R(S) using Gorenstein and almost Gorenstein rings, when S is a ring. Finally,
we posed some open questions.

2. Properties of R(M)

Definition 2.1. [2] Let M ∈ C. The largest reduced submodule of M is
defined as R(M) = (0 :M m), where m = ⟨x1, · · · , xn⟩.

Let R be a ring. A multiplicatively closed subset of R is a set S in R such that
1 ∈ S and for any two elements s, s′ ∈ S, their product ss′ is also in S. In this
Section, we study some properties of the submodule R(M),M ∈ C.

Proposition 2.1. S−1(R(M)) = R(S−1(M)).

Proof. To show S−1(R(M)) ⊆ R(S−1(M)), let y = m
s ∈ S−1(R(M))) and

ay ̸= 0 which implies am
s ̸= 0, it follows that am ̸= 0. Since m ∈ R(M), we

have a2m ̸= 0 ⇒ a2m
s ̸= 0 which implies that a2y ̸= 0, hence y ∈ R(S−1(M)).

Conversely, suppose y = m
s ∈ R(S−1(M)), where m ∈ M . Let am ̸= 0 ⇒ am

s ̸=
0 ⇒ ay ̸= 0, by hypothesis this implies that ay2 ̸= 0 ⇒ am2

s2 ̸= 0, which follows

that am2 ̸= 0. Hence, R(S−1(M)) ⊆ S−1R(M).
□

Lemma 2.1. Let M ∈ C and m̄ ∈ M then there exists a positive integer k such
that ⟨x1, · · · , xn⟩km̄ = 0̄.

Proof. We can choose a positive integer k in such a way that ⟨x1, · · · , xn⟩k ⊆
I then ⟨x1, · · · , xn⟩km̄ = 0̄. □

[13] Let R be a commutative noetherian ring and I, J be ideals of R. For an
R-module M , ΓI,J(M) = {m ∈ M : Inm ⊆ Jm, n >> 1} is an R-submodule of M .
M is said to be (I, J)-torsion (resp. (I, J)-torsion free) when ΓI,J(M) = M (resp.
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ΓI,J(M) = 0). For an integer i, the ith right derived functor of ΓI,J is denoted
by Hi

I,J and will be referred to as the ith local cohomology functor with respect to

(I, J).

Proposition 2.2. LetM ∈ C. I and J be any monomial ideals of k[x1, · · · , xn].
Then M is (I, J)-torsion, i.e., ΓI,J(M) = M .

Proof. For J = 0, any monomial ideal I of k[x1, · · · , xn] is contained in the
maximal ideal ⟨x1, · · · , xn⟩ of k[x1, · · · , xn]. By Lemma 2.1, there exists k ∈ Z+

such that Ikmi = 0 for each generators mi of M ∈ C, then for any m ∈ M ,
Ikm = Ik

∑
i fimi =

∑
i fiI

kmi = 0, where fi ∈ k[x1, · · · , xn], so M ⊆ ΓI(M).
Moreover, ΓI(M) is a submodule of M . Thus ΓI(M) = M . Let m ∈ M for any
monomial ideal I, there exists a monomial ideal J such that I ⊆ J and for n >> 1
we have In ⊆ I ⊆ J , then Inm ⊂ Jm and thus m ∈ ΓI,J(M). Since ΓI,J(M) is a
submodule of M we have ΓI,J(M) ⊆ M . □

Proposition 2.3. Let M ∈ C. Then,

1. Hi
I,J(M) = 0 for all i > 0.

2. Hi
I,J(M) is an (I, J)-torsion R-module for any i ⩾ 0.

3. M/ΓI,J(M) is an (I, J)-torsion free R-module.
4. Hi

I,J(M) ∼= Hi
I,J(M/ΓI,J(M)).

Proof. From Proposition 2.2, M ∈ C is (I, J)-torsion, then the proof for all
of them follows from [13, Corollary 1.13]. □

Proposition 2.4. For M ∈ C, R commutes with both the functors ΓI,J and
ΓI , where I and J are monomial ideals.

Proof. R, ΓI and ΓI,J are functors over the full subcategory C of R-Mod. By
Proposition 2.2, R(ΓI(M)) = R(M) and similarly ΓI(R(M)) = R(M). Therefore,
R(ΓI(M)) = ΓI(R(M)) and R(ΓI,J(M)) = ΓI,J(R(M)). □

Proposition 2.5. The functor R commutes with direct limits.

Proof. By [3, Proposition 3.4.4], the I-torsion functor ΓI commutes with
direct limits, then by Proposition 2.4 R commutes with direct limits. □

In general category of reduced modules is not abelian.

Theorem 2.1. Let Cred be the full subcategory R-Mod of all reduced submod-
ules of M in C. Then, Cred is abelian full subcategory of R-Mod.

Proof. It is enough to show that Cred contains kernel and cokernel of a mor-
phism. Consider the homomorphism f : N1 −→ N2, where N1 and N2 are in Cred,
since reduced modules are closed under submodule, we have ker(f) ∈ Cred and also
m(N2/im(f)) = 0, hence N2/im(f) ⊆ R(M), for some M ∈ C, which shows that
Cred contains the cokernel of f , where m is a maximal ideal of R.

□
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2.1. Family of ideals in which R(M) being derived is filter, monoidal
and strongly Oka. Let F be a family of ideals in R := k[x1, · · · , xn] ∈ T. We say

1. F is a semifilter if, for all I, J ⩽ R, I ⊇ J ∈ F ⇒ I ∈ F;
2. F is a filter if it is a semifilter and A,B ∈ F ⇒ A ∩B ∈ F;
3. F is monoidal if A,B ∈ F ⇒ AB ⇒ F;

It is well known that a class of monomial ideals is closed under intersection, see
in [14].

Remark 2.1. Note that 0 and R are monomial ideals of R := k[x1, · · · , xn]
generated by ∅ and 1R respectively.

An ideal family T in a ring R with R ∈ T is said to be strongly Oka family
if, (I, J), (I : J) ∈ T , then I ∈ T . For a monomial ideals I and J . Define

T :=

{
I ⩽ R | R(M) = J

I ,M ∈ C

}
. R ∈ T since M = R

R = 0, hence R(0) = 0.

Theorem 2.2. 1. T is semifilter,
2. T is filter,
3. T is monoidal.
4. The family T is strongly Oka.

Proof. 1. Let I, J ⩽ R. I ⊇ J and J ∈ T, there exists a finite di-

mensional M = k[x1,··· ,xn]
J such that R(M) = J1

J , if J = I, its done.
Otherwise, since I contains every generator of J , there exists a finite di-

mensional M1 = k[x1,··· ,xn]
J such that R(M1) = K

I , for some monomial
ideal K. Thus I ∈ T.

2. Since A,B ∈ T, there exists A1 and A2 such that R(M1) = A1

A and

R(M2) =
B1

B and we have A∩B ⊆ A1∩B1. Letm ∈ A1∩B1, which implies
m ∈ A1 and m ∈ B1 and thus by [2, Theorem 2.1], xim = 0 (modA) for
each i and xim = 0 (mod B) and hence xim = 0 (mod(A ∩B)) and thus
m is element of the reduced submodule R(K) = A1∩B1

A∩B .

3. Let A = ⟨s⟩, B = ⟨t⟩ ∈ T, then there exists R(M1) =
J1

A ,R(M) = J2

B for
some monomial ideals J1 and J2. However, AB = ⟨st⟩ is a monomial ideal

whose generating set is st and M = k[x1,··· ,xn]
AB is a finitely dimensional

module and so we have the corresponding R(M) = J
AB , thus AB ∈ T.

4. Let I + J, (I : J) ∈ T, which implies k[x1,··· ,xn]
I+J , k[x1,··· ,xn]

(I:J) ∈ C, i.e., gener-

ators of I+J and (I : J) contains every powers of xi. Now, let a ∈ (I : J),
i.e., aJ ⊆ I hence, we must have powers of each xi among generators of

I and hence k[x1,··· ,xn]
I ∈ C. Thus, I ∈ T.

□

2.2. Koszul cohomologies are reduced modules. Let x := x1, x2, · · · , xd

be a sequence of elements of a ring R, and M an R-module. The Koszul complex
on x is the complex

K•(x;R)
= K•(x1;R

)
⊗R · · · ⊗R K•(xd;R

)
,
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where K•(xi;R
)
, for each i ⩽ d, is the complex

0 −→ R
xi−−→ R −→ 0

with R in degrees −1 and 0. The Koszul complex of x on M is the complex
K•(x;M)

= K•(x;R)
⊗R M . The Koszul cohomology of x on M is Hj(x;M) =

Hj(K•(x;M)
) for j ∈ Z.

Proposition 2.6. Let x = x1, · · · , xn be a sequence of elements of R =
k[x1, · · · , xn] and M ∈ C. For each j, Hj(x;M) is a reduced R-module.

Proof. The koszul cohomology Hj(x;M) is a submodule of some factor mod-
ule of the form M l/im dj−1 . By [6, Proposition 6.20], ⟨m⟩ annihilates Hj(x;M).
By definition of R(M), it follows that Hj(x;M) ⊆ R(M l/im dj−1), since
R(M l/im dj−1) is reduced so is its submodule. □

Corollary 2.1. Let x = x1, · · · , xn (resp. m = ⟨x1, · · · , xn⟩) be a sequence
of elements of R = k[x1, · · · , xn] (resp. maximal ideal R), and M ∈ C, N ∈ Cred.
Then the following follows:

1. H0(x;M) ∼= k,
2. H−n(x;M) = R(M),
3. H−n(x;N) = H0(x;N) = N .

Proof. By [6, Exercise 6.8] we have H0(x;M) = M/mM and H−n(x;M) =
(0 :M m). Its easy to see that the former is isomorphic with k and the latter holds
true by [2, Theorem 2.1]. The proof of three is a special case of 1 and 2. □

3. Classification of R(M) for M = k[x, y]/I and their characterization

In this Section, for M := R/I ∈ C and R := k[x, y] we find a general alge-
braic formula that determine R(M) and we classify R(M) into four types. The
lexicographic order in k[x, y] is given by 1 > x > x2 > · · · y > y2 > · · · .

Theorem 3.1. Let M ∈ C and I = ⟨m1,m2, · · · ,mt⟩, assuming that m1 >
m2 > · · · > mt in the lexicographic order, then the monomial k-basis of R(M) is
given by:

gi =
lcm(mi,mi+1)

xy

for i = 1, · · · , t− 1(with lcm denoting the least common multiple of the two mono-
mials) and J = ⟨g1, g2, · · · , gk⟩ for i = 1, · · · , l for l ⩽ t such that R(M) = J/I.

Proof. Let V = {m1,m2, · · · ,mt} be set of generators of I. Assume that
lcm(mi,mi+1) = ni is located at the junction box of the row and column of the
Young diagram which contains the monomials mi and mi+1. Then dividing this ni

by the monomial xy, means we are shifting back along the diagonal one step, i.e.,
we are reducing the powers of x and y by one of ni, denote the resulting monomial
gi, repeating this for other consecutive monomials we get U = {g1, g2, · · · , gl} and
the ideal generated by this set denoted by J which we get from the set V containing
the monomials mi, i = 1, · · · , t, thus by [2, Theorem 2.1], R(M) = J/I. □



198 T. W. BIHONEGN, T. ABEBAW, AND N. AREGA

Remark 3.1. Note that it is also possible to generate an ideal I from the given
ideal J of R such that R(M) = J/I, see the algorithm developed in [15].

Definition 3.1. [4] Anm-primary monomial ideal is called x-tight if the power
of x in every generator is exactly by one greater than of the preceding generator.
That is, I is x-tight of order r if and only if I = ⟨xiybi⟩ri=0 with b0 > · · · > br = 0.
If J = ⟨xajys−j⟩sj=0 is an ideal, where 0 = a0 < · · · < as, then J is called y-tight of
order s.

example 3.1. Let I = ⟨x4, y3⟩ and J = ⟨x2, xy, y4⟩. Then, I is neither x-tight
nor y-tight. However, J is x-tight, but not y-tight.

Definition 3.2. Let R := k[x, y] and M ∈ C. A generator m of M is an
outside corner generator if xm = ym = 0,m is inner if it is not an outside corner
generator.

example 3.2. In Figure 1 those generators of M circled red are the outside
corner generators of M and the rest are inner generators of M .

Young diagram M R(M) type

1. 1 x x2 x3 x4 x5 x6 k[x]
⟨x7⟩

⟨x6⟩
⟨x7⟩ 2

2.
1 x x2 x3 x4 x5

y
k[x,y]

⟨x6,xy,y2⟩
⟨x5,y⟩

⟨x6,xy,y2⟩ 4A

We classify R(M) = J/I based on properties of its associated Young diagrams
into four as follows:

• Type 1: The number of boxes along the rows and columns decreases by
one (stair shape).

• Type 2: Every row (resp. column) contains an equal number of boxes
(rectangular shape).

• Type 3: The Young diagram contains one row and one column each,
containing at least three boxes (longer “L” shape ).

• Type 4: Mixed (none of the above three types) Type 4 further classified
as:

– Type 4A: The number of boxes in some rows ( resp. columns) de-
creases by one, and at least two columns (resp. rows) contain same
number of boxes (partial stair shape).

– Type 4B: There is at least one pair of columns and another pair of
rows with the same number of boxes.

Characterization of type 1, 2 and 3 are given in Theorem 3.2 and Theorem 3.3
depicts characterization of type 4A and 4B.
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Young diagram M R(M) type

3. 1 x x2 x3 x4

y xy
k[x,y]

⟨x5,x2y,y2⟩
⟨x4,xy⟩

⟨x5,x2y,y2⟩ 4A

4.

1 x x2

y

x3 x4

y

y2

k[x,y]
⟨x5,xy,y3⟩

⟨x4,y2⟩
⟨x5,xy,y3⟩ 3

5.

1 x x2

xy

x3

y x2y
k[x,y]

⟨x4,x3y,y2⟩
⟨x3,x2y⟩

⟨x4,x3y,y2⟩ 4A

6.

1 x x2 x3

y xy

y2

k[x,y]
⟨x4,x2y,xy2,y3⟩

⟨x3,xy,y2⟩
⟨x4,x2y,xy2,y3⟩ 4A

7.

1 x x2

xyy x2y

y2

k[x,y]
⟨x3,xy2,y3⟩

⟨x2y,y2⟩
⟨x3,xy2,y3⟩ 4B

8.
1

y2

x2

y3

x x3

y k[x,y]
⟨x4,xy,y4⟩

⟨x3,y3⟩
⟨x4,xy,y4⟩ 3

Figure 1. R(M) for a 7-dimensional k-module M ∈ C, the circled
are generators for R(M).

Theorem 3.2. LetM = k[x, y]/I be an R =: k[x, y]-module such that dimM <
∞. Then R(M) = J/I is:

1. Type-1 if and only if J is both x-tight and y-tight ideal of R.
2. Type-2 if and only if J is a principal ideal of R.
3. Type-3 if and only if J is a pure power ideal of R.
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Proof. 1. Let R(M) be a type-1 submodule of M and λ the associated
Young diagram. Then, the number of boxes along rows and columns
decreases by one, for which the monomials at the outside corner of λ are
with the same degree. Thus, R(M) has a general formula:

R(M) = J/I =
⟨xn−1, xn−2y, · · · , xyn−2, yn−1⟩

⟨xn, xn−1y, · · · , xyn−1, yn⟩
and this shows that J is both x-tight and y-tight ideal of R, where n is a
positive integer. Conversely, let J be an x and y-tight ideal of R then by
the algorithm in [15] we generate an ideal I such that R(M) = J/I and
the associated Young diagram has the property that the number of boxes
along rows and columns decreases by one and hence R(M) is type 1.

2. Suppose R(M) be a type-2 submodule of M and λ the associated Young
diagram. Then every row (resp. columns) contains the same number of
boxes, so λ is rectangular and the monomial at the outside corner of λ is
the only one. Therefore, J is a principal ideal and the general formula is
given as:

R(M) = J/I =
⟨xa−1yb−1⟩
⟨xa, yb⟩

where a, b ⩾ 2. The converse is similar to the converse of proof of 1.
3. Suppose R(M) be type 3 submodule of M and λ the associated Young

diagram. Then λ contains one row and one column each containing at
least three boxes. The outside corner elements are xa−1 and yb−1, where
a, b ⩾ 3 and the general formula is given as:

R(M) = J/I =
⟨xa−1, yb−1⟩
⟨xa, xy, yb⟩

which shows that J is generated by a pure power ideal. The converse is
similar to the converse of proof of 1.

□

Lemma 3.1. If I is an x-tight or y-tight ideal of R, then so is J , where R(M) =
J/I.

Theorem 3.3. Let R(M) = J/I and J doesn’t have the form of type 1, 2 and
3. Then,

1. R(M) is type 4A if and only if I is an x-tight or y-tight (not both) ideal
of R.

2. R(M) is type 4B if and only if I is neither x-tight nor y-tight ideal of R.

Proof. 1. Let R(M) be type 4A and λ be the associated Young dia-
gram. The number of boxes in some rows decreases by one, and at least
two columns contain the same number of boxes. This shows that every
power of the variable y appears in the generators of the ideal I. Thus, I
is y-tight ideal. Conversely, suppose that I is y-tight ideal of R, then by
Lemma 3.1 and Theorem 3.1 J is y-tight ideal of R such that R(M) = J/I
and this shows that the number of boxes in some rows decreases by one,
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and at least two columns contain the same number of boxes. Therefore,
R(M) is type 4A.

2. Since we have pairs of columns and rows with the same number of boxes.
The Powers of each variable x and y don’t strictly decrease within the
monomial generators of I. Therefore, I is neither an x-tight nor y-tight
ideal of R. Conversely, suppose I is neither an x-tight nor y-tight ideal of
R. When we depict generators of M = R/I in a Young diagram, at least
one pair of columns and another pair of rows with the same number of
boxes can be seen. This shows that the corresponding R(M) is type 4B.

□

Proposition 3.1. Let M := k[x,y]
I ∈ C such that I is both x-tight and y-tight

with n+ 1 distinct generators. Then,
J is also an x-tight and y-tight ideal of R, where R(M) = J/I, dimkR(M) = l

and dimkM = l(l+1)
2 .

Proof. 1. The Young diagram associated to M takes the following
shape

1 x x2 . . . xl−2 xl−1

. . .xyy x2y xl−2y

...
...

...

yl−2 xyl−2

yl−1

The ideal J generated by elements at the outside corners of this Young
diagram is ⟨xl−1, xl−2y, · · · , xyl−2, yl−1⟩ which has l distinct linearly in-
dependent generators and also this ideal is both x-tight and y-tight. Then
dimkR(M) = l and by [2, Theorem 2.1], R(M) = J

I .
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2. Identify each square in the Young diagram with a green dot at the top
left corner of the square. We get

...

...

...

...

. . .
. . .

. . .
. . .

l

l

The dots when combined form shapes of triangles and their numbers
form a sequence of triangle numbers, namely; 1, 3, 6, 10, 15, 21, · · · whose

sum of first l terms is given by l(l+1)
2 , see [8]. Since these dots are in a one-

to-one correspondence with the squares of the Young diagram, which are
also in a one-to-one correspondence with the generators of M , dimkM =
l(l+1)

2 .
□

4. Characterization of R(S), when S = R/I is a ring

Definition 4.1. Let S ∈ C (a zero-dimensional local ring). S is said to be
Gorenstein if and only if S ∼= Homk(S, k) (dual of S), [5].

Definition 4.2. The largest reduced ideal for a ring S ∈ C is defined as
the largest reduced submodule of S, when considering S as a right S-module or
left S-module. Then R(S) = (0 :S n), where n is a maximal ideal for S. If
dimk(R(S)) = 1, then S is Gorenstein.

Proposition 4.1. Let S ∈ C. The following are equivalent:

1 S is Gorenstein.
2 S is injective as an S-module.
3 R(S) is simple and it is type 2.
4 Homk(S, k) can be generated by one element.

Proof. By [2], we have soc(S) = R(S), then the proof follows from [5, Propo-
sition 21.5]. □

Proposition 4.2. Consider the x-tight ideal I = ⟨x2, xy, yn⟩, n ⩾ 3. Then we
have an R-module S = R/I and Then

1. S/R(S) is Gorenstein.
2. S/R(S) is injective module over itself.
3. R(S/R(S)) is type 2.
4. R(S) is type 4A.
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Proof. 1. R(S/R(S)) = ⟨yn−2⟩/⟨x, yn−1⟩ and its dimension is 1. Hence,
S/R(S) is Gorenstein.

2. Since S/R(S) is Gorenstein then by Proposition 3.2 S/R(S) is injective
module over itself.

3. It is clear from the proof of 1, 2 and Proposition 4.1.
4. Since I is generated by x-tight ideal, R(S) is type 4A.

□

An Artinian ring S = k[x,y]
I is said to be almost Gorenstein of type k if |∂(I)| =

k, [1]. Note that R(S) is generated by ∂(I).

Proposition 4.3. Consider the ring S = k[x, y]/I then

1. If I is generated by n monomials such that R(G) is type 1 then S is almost
Gorenstein of type (n− 1).

2. If R(G) is type 3 then S is almost Gorenstein of type 2.

Proof. 1. Let I = ⟨xn, xn−1y, · · · , xyn−1, yn⟩, n ⩾ 2 and then, R(S) =
⟨xn−1,xn−2y,··· ,xyn−2,yn−1⟩

⟨xn,xn−1y,··· ,xyn−1,yn⟩ , i.e., R(S) is generated by n−1 monomials, thus

S is almost Gorenstein of type (n− 1).

2. Since R(S) is type 3 then, R(S) = ⟨xa−1,yb−1⟩
⟨xa,xy,yb⟩ , a, b > 3. This shows that

R(S) is generated by only two monomials and thus R(S) is Gorenstein of
type 2.

□

Remark 4.1. The converses of the above Proposition isn’t true in general.
Consider the ring S = k[x, y]/⟨x3, xy, y2⟩ and R(S) = ⟨x2, y⟩/⟨x3, xy, y2⟩, which is
almost Gorenstein of type 2, but it is neither type 1 nor type 3.

Question 4.1. Is there a possible way to find a general algebraic formula to
all type 4 submodules, R(M) of M ∈ C?

Question 4.2. Can we find an algebraic characterization to all of the type 4
submodules R(M) of M ∈ C?

Question 4.3. Is there a method to find the generators of R(M), where M =
k[x1,··· ,xn]

I , where n ⩾ 3? Is it still possible to classify R(M) and characterize them?
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