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ON THE WORD PROBLEM FOR
SCHUTZENBERGER-WREATH PRODUCT OF

MONOIDS

Eylem Güzel Karpuz and Fatmanur Yıldız

Abstract. In [20], the authors defined a new version of the Schützenberger

product for any two monoids and gave a presentation of this new monoid

construction. In this paper, by considering the presentation given in [20], we
study on complete rewriting system for this monoid construction and obtain

normal form structure of its elements. Then, we present solvability of the

word problem for this construction. Finally, we illustrate our results with an
example .

1. Introduction and Preliminaries

The origin of Combinatorial Group Theory can be traced back to 1911 when
Max Dehn posed three questions concerning groups defined by finite presenta-
tions: the word, conjugacy and isomorphism problems [1, 14]. The word prob-
lem is the problem of, given a presentation of the structure in terms of generators
and relations, deciding whether or not two given words over the generators repre-
sent the same element of the structure. In this paper, we study on solvability of
the word problem for a new monoid product, which is defined in [20] and called
Schützenberger-wreath product of monoids. To have solvability word problem for
this new monoid construction, we study on complete rewriting system.

At the rest of this section let us give the standard definitions and informations
about complete rewriting system, Schützenberger product and wreath product of
monoids.
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256 GÜZEL KARPUZ AND YILDIZ

1.1. Complete rewriting system. Let X be a finite alphabet and let X∗

be the free monoid consisting of all words obtained by the letters of X. A string
rewriting system, or simply a rewriting system, on X∗ is a subset R ⊆ X∗ × X∗

and an element (x, y) ∈ R, also written as x → y, is called a rule of R. The idea
for a rewriting system is an algorithm for substituting the right-hand side of a rule
whenever the left-hand side appears in a word. In general, for a given rewriting
system R, we write x → y for x, y ∈ X∗ if x = uv1w, y = uv2w and (v1, v2) ∈ R.
An element x ∈ X∗ is called irreducible with respect to R if there is no possible
rewriting (or reduction) x → y; otherwise x is called reducible. The rewriting
system R is called

• Noetherian if there is no infinite chain of rewritings x → x1 → x2 → · · ·
for any word x ∈ X∗,

• Confluent (diamond rule) if whenever x →∗ y1 and x →∗ y2, there is a
z ∈ X∗ such that y1 →∗ z and y2 →∗ z,

• Complete if R is both Noetherian and confluent.

If R is a complete rewriting system, then for every word x there is a unique irre-
ducible word y such that x →∗ y; this word is called the normal form of x. Each
element of the monoid presented by ⟨X;R⟩ has a unique normal form representive.
For u, v ∈ X∗, if |u| > |v| or if |u| = |v| and v precedes u in the lexicograpfic ordering
induced by a linear ordering on X, then we write v < u and < is called length-
lexicographic ordering. A rewriting system is R is called a length-lexicographic
rewriting system if s < r for all (r, s) ∈ R. It is clear that length-lexicographic
rewriting system is Noetherian.
If a rewriting system is complete then one can obtain normal form structure of ele-
ments. So we can say that the word problem for given rewriting system is solvable.
We note that the reader is referred to [6,7,25] for a detailed survey on (complete)
rewriting system and to [10–13] for word problem and complete rewriting systems
of some group and semigroup constructions.

1.2. Schützenberger and wreath products of monoids. In [24], the au-
thor introduced a monoid construction, namely the Schützenberger product. This
product was originally defined for two monoids in view of applications to Lan-
guage Theory. The Schützenberger product plays an important role in the study
of several problems of Automata Theory, such as, the Dot Depth Hierarchy of reg-
ular languages and studying concatenation product. In [17], the authors obtained
a presentation for Schützenberger product of two monoids and gave the normal
form structure of the elements of this product. In [4], the authors obtained nor-
mal form of elements of Schützenberger product of two monoids by using Gröbner-
Shirshov bases theory. Many authors combined and extended Schützenberger prod-
uct with different products to obtain a new monoid construction. As an example
of these works, in [2], Ateş obtained a new monoid construction under semidirect
and Schützenberger products. In [15], the authors defined a new monoid struc-
ture by taking into consideration crossed and Schützenberger products for any two
monoids.
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The Schützenberger product has been extended by Straubing for any number
of monoids [26]. In [16], the authors gave a presentation of the Schützenberger
product of n groups G1, G2, · · · , Gn, given a monoid presentation ⟨Xi;Ri⟩ of each
group Gi, by using Matrix Theory. Then in [11], by using the presentation given
in [16], the authors computed a complete rewriting system and gave an algorithm
for getting normal form of its elements.

Let us consider the monoids A = ⟨X1;R1⟩ and B = ⟨X2;R2⟩ and let P (A×B)
be the finitary power set of direct product A×B. For P ⊆ A×B (a ∈ A, b ∈ B),
we define

aP = {(ac, d) | (c, d) ∈ P} and Pb = {(c, db) | (c, d) ∈ P} .

The Schützenberger product of monoids A and B is the set A×P (A×B)×B with
multiplication (a1, P1, b1) (a2, P2, b2) = (a1a2, P1b2 ∪ a1P2, b1b2). It is denoted by
A3B. Here A3B is a monoid with the identity (1A, ∅, 1B) [17].
The reader is referred to [3,8,9,19,21] for some recent results on algebraic prop-
erties of Schützenberger product of groups, monoids and their derivations.

Now we present some information about wreath product of monoids. It is well
known that the cartesian product of B copies of the monoid A is denoted by A×B

and the corresponding direct product is denoted by A⊕B . One may think of A×B

as the set of all such functions from B to A, and A⊕B as the set all such functions
f having finite support, that is to say, having the property that (x)f = 1A for all
but finitely many x ∈ B. The unrestricted and restricted wreath products of the
monoid A by the monoid B, are the sets A×B ×B and A⊕B ×B, respectively, with
the multiplication defined by

(f, b)(g, b
′
) = (f bg, bb

′
),

where bg : B → A is defined by

(1.1) (x)bg = (xb)g (x ∈ B).

It is also a well known fact that both these wreath products are monoids with the
identity (1, 1B), where x1 = 1A for all x ∈ B.
For more details on the definition and applications of restricted (unrestricted)
wreath products, we can refer the reader to [5,17,18,22,23].

2. Schützenberger – wreath product of monoids

In this section, our aim is to give the solvability of the word problem for
Schützenberger - wreath product of two cyclic monoids. To do that, we obtain
a complete rewriting system for this monoid construction by using the presentation
of this product given in [20].

Definition 2.1. [20] Let A and B be monoids and let A⊕B be the set of all
functions f from B into A having finite support. For P ⊆ A⊕B ×B and b ∈ B, let
us define a set

Pb = {(f, db) : (f, d) ∈ P}.
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The new version of the Schützenberger product of A by B (Schützenberger - wreath
product), denoted by A3vB, is the set A⊕B×P(A⊕B×B)×B with the multiplication

(f, P1, b1)(g, P2, b2) = (f b1g, P1b2 ∪ P2, b1b2).

It is seen that A3vB is a monoid with the identity element (1, ∅, 1B), where b1g is
defined as in (1.1).

Theorem 2.1. [20] Let us suppose that the monoids A and B are defined by
presentations

A = ⟨x;xk = xl (k > l)⟩ and B = ⟨y; ys = yt (s > t)⟩,

respectively. Then the Schützenberger - wreath product of monoids A and B, A3vB,
is defined by generators x(i), zx(j),ym and y, and relations

(1) ys = yt,

(2) x(i)x(j) = x(j)x(i) (i < j),

(3) (x(i))k = (x(i))l,

(4) yx(t) = x(s−1)y,

(5) yx(i) = x(i−1)y (0 < i ⩽ s− 1),

(6) z2x(j),ym = zx(j),ym ,

(7) zx(j),ymzx(i),yn = zx(i),ynzx(j),ym ,

(8) x(i)zx(j),ym = zx(j),ymx(i),

(9) zx(j),ymy = yzx(j),ym+1 ,

where 0 ⩽ i, j,m, n ⩽ s− 1.

Regarding the numbers of relations given in the forms (1)-(9) in Theorem 2.1,
the following numerical values and formulas are obtained.

Number of relations of the form (1): 1

Number of relations of the form (2): s(s−1)
2

Number of relations of the form (3): s
Number of relations of the form (4): 1
Number of relations of the form (5): s− 1
Number of relations of the form (6): s2

Number of relations of the form (7): s2(s2−1)
2

Number of relations of the form (8): s3

Number of relations of the form (9): s2

With an easy calculation, the following result is obtained.

Corollary 2.1. The total numbers of generators and relations in the presenta-
tion given in Theorem 2.1 are formulated as (s+ 1)

2−s and 1
2 (s4+2s3+4s2+3s+2),

respectively.
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Now we can give the main result of this section. To do that, let us consider the
generators and relations given in Theorem 2.1, and order the generators as follows.

x(s−1) > x(s−2) > · · · > x(1) > x(0) >(2.1)

zx(s−1),ys−1 > zx(s−1),ys−2 > · · · > zx(s−1),y2 > zx(s−1),y > zx(s−1),1 >

zx(s−2),ys−1 > zx(s−2),ys−2 > · · · > zx(s−2),y2 > zx(s−2),y > zx(s−2),1 > · · · >
zx(1),ys−1 > zx(1),ys−2 > · · · > zx(1),y2 > zx(1),y > zx(1),1 >

zx(0),ys−1 > zx(0),ys−2 > · · · > zx(0),y2 > zx(0),y > zx(0),1 > y.

We note that we consider the reductions steps on words by taking into account
length-lexicographic ordering on words. We also note that the notation (r) ∩ (p)
denotes the overlapping word of left hand sides of relations (r) and (p).

Theorem 2.2. Let A = ⟨x;xk = xl (k > l)⟩ and B = ⟨y; ys = yt (s > t)⟩. A
complete rewriting system for Schützenberger-wreath product of monoids A and B,
A3vB, consists of the following rules by considering the order on generators given
by (2.1):

(1) ys → yt,

(2) x(j)x(i) → x(i)x(j) (j > i),

(3) (x(i))k → (x(i))l,

(4) x(s−1)y → yx(t),

(5) x(i−1)y → yx(i) (0 < i ⩽ s− 1),

(6) z2x(j),ym → zx(j),ym ,

(7) zx(j),ymzx(i),yn → zx(i),ynzx(j),ym ,

(8) x(i)zx(j),ym → zx(j),ymx(i),

(9) zx(j),ymy → yzx(j),ym+1 ,

where 0 ⩽ i, j,m, n ⩽ s− 1.

Proof. This rewriting system is Noetherian since there is no infinite chain of
rewritings of overlapping words for the given length-lexicographic ordering given
by (2.1). In order to show the second condition, the confluent property (diamond
rule), the words obtained by appropriate overlappings of the words on the left-hand
side of all rewriting rules are given below.

(1) ∩ (1) : ys+1 −→
{

yty = yt+1

yyt = yt+1

For x(j) > x(i) > x(p),

(2) ∩ (2) : x(j)x(i)x(p) −→
{

x(i)x(j)x(p) → x(i)x(p)x(j) → x(p)x(i)x(j)

x(j)x(p)x(i) → x(p)x(j)x(i) → x(p)x(i)x(j)

(2) ∩ (3) : x(j)(x(i))k −→
{

x(i)x(j)(x(i))k−1 → · · · → (x(i))kx(j) → (x(i))lx(j)

x(j)(x(i))l → x(i)x(j)(x(i))l−1 → · · · → (x(i))lx(j)
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(2) ∩ (5) : x(j)x(i−1)y −→
{

x(i−1)x(j)y → x(i−1)yx(j+1) → yx(i)x(j+1)

x(j)yx(i) → yx(j+1)x(i) → yx(i)x(j+1)

(2) ∩ (8) :

x(j)x(i)zx(j),ym −→
{

x(i)x(j)zx(j),ym → x(i)zx(j),ymx(j) → zx(j),ymx(i)x(j)

x(j)zx(j),ymx(i) → zx(j),ymx(j)x(i) → zx(j),ymx(i)x(j)

(3) ∩ (2) : (x(j))kx(i) −→
{

(x(j))lx(i) → (x(j))l−1x(i)x(j) → · · · → x(i)(x(j))l

(x(j))k−1x(i)x(j) → · · · → x(i)(x(j))k → x(i)(x(j))l

(3) ∩ (3) : (x(i))k+1 −→
{

(x(i))lx(i) = (x(i))l+1

x(i)(x(i))l = (x(i))l+1

(3) ∩ (4) : (x(s−1))ky −→
{

(x(s−1))ly → (x(s−1))l−1yx(t) → · · · → y(x(t))l

(x(s−1))k−1yx(t) → · · · → y(x(t))k → y(x(t))l

(3) ∩ (5) : (x(i−1))ky −→
{

(x(i−1))ly → (x(s−1))l−1yx(t) → · · · → y(x(t))l

(x(i−1))k−1yx(t) → · · · → y(x(t))k → y(x(t))l

(3) ∩ (8) :

(x(i))kzx(j),ym →
{

(x(i))lzx(j),ym → (x(i))l−1zx(j),ymx(i) → · · · → zx(j),ym(x(i))l

(x(i))k−1zx(j),ymx(i) → · · · → zx(j),ym(x(i))k → zx(j),ym(x(i))l

(4) ∩ (1) : x(s−1)ys −→
{

yx(t)ys−1 → y2x(t+1)ys−2 → · · · → ysx(t) → ytx(t)

x(s−1)yt → yx(t)yt−1 → y2x(t+1)yt−2 → · · · → ytx(t)

(5) ∩ (1) : x(i−1)ys −→
{

yx(i)ys−1 → y2x(i)ys−2 → · · · → ysx(i) → ytx(i)

x(i−1)yt → yx(i)yt−1 → y2x(i)yt−2 → · · · → ytx(i)

(6) ∩ (6) : z3
x(j),ym −→

{
z2
x(j),ym → zx(j),ym

z2
x(j),ym → zx(j),ym

(6) ∩ (7) :

z2
x(j),ymzx(i),yn −→

{
zx(j),ymzx(i),yn → zx(i),ynzx(j),ym

zx(j),ymzx(i),ynzx(j),ym → zx(i),ynz2x(j),ym → zx(i),ynzx(j),ym

(6) ∩ (9) :
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z2
x(j),ymy −→

{
zx(j),ymy → yzx(j),ym+1

zx(j),ymyzx(j),ym+1 → yz2
x(j),ym+1 → yzx(j),ym+1

(7) ∩ (6) :

zx(j),ymz2
x(i),yn −→

{
zx(i),ynzx(j),ymzx(i),yn → z2

x(i),ynzx(j),ym → zx(i),ynzx(j),ym

zx(j),ymzx(i),yn → zx(i),ynzx(j),ym

(7) ∩ (7) : Let us label the word zx(j),ymzx(i),ynzx(p),yh by A (0 ⩽ p, h ⩽ s− 1).

A →
{

zx(i),ynzx(j),ymzx(p),yh → zx(i),ynzx(p),yhzx(j),ym → zx(p),yhzx(i),ynzx(j),ym

zx(j),ymzx(p),yhzx(i),yn → zx(p),yhzx(j),ymzx(i),yn → zx(p),yhzx(i),ynzx(j),ym

(7) ∩ (9) : Let us label the word zx(j),ymzx(i),yny by B.

B →
{

zx(i),ynzx(j),ymy → zx(i),ynyzx(j),ym+1 → yzx(i),yn+1zx(j),ym+1

zx(j),ymyzx(i),yn+1 → yzx(j),ym+1zx(i),yn+1 → yzx(i),yn+1zx(j),ym+1

(8) ∩ (6) : x(i)z2
x(j),ym −→

{
zx(j),ymx(i)zx(j),ym → z2

x(j),ymx(i) → zx(j),ymx(i)

x(i)zx(j),ym → zx(j),ymx(i)

(8) ∩ (7) : Let us label the word x(i)zx(j),ymzx(i),yn by C.

C →
{

zx(j),ymx(i)zx(i),yn → zx(j),ymzx(i),ynx(i) → zx(i),ynzx(j),ymx(i)

x(i)zx(i),ynzx(j),ym → zx(i),ynx(i)zx(j),ym → zx(i),ynzx(j),ymx(i)

(8) ∩ (9) :

x(i)zx(j),ymy −→
{

zx(j),ymx(i)y → zx(j),ymyx(i+1) → yzx(j),ym+1x(i+1)

x(i)yzx(j),ym+1 → yx(i+1)zx(j),ym+1 → yzx(j),ym+1x(i+1)

(9) ∩ (1) : zx(j),ymys −→
{

yzx(j),ym+1ys−1 → · · · → yszx(j),yt → ytzx(j),yt

zx(j),ymyt → yzx(j),ym+1yt−1 → · · · → ytzx(j),yt

It is seen that all overlapping words are reduced to the same words after ap-
propriate reduction steps. Therefore, the confluent property for the given rewriting
system is also satisfied. Consequently, since the presentation of A3vB is Noetherian
and confluent, it is complete. Hence the result. □

By considering Theorem 2.2, we have the following other result of this section.

Corollary 2.2. The normal form of a word w representing an element of
A3vB, is

(2.2) ypWz
x(i),ym

W ′
(x(q))t (0 ⩽ p, q ⩽ s− 1 and 0 ⩽ t ⩽ k − 1),

where Wz
x(i),ym

and W ′
(x(q))t are reduced words obtained by generators zx(i),ym and

(x(q))
t
, respectively.
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By considering Theorem 2.2 and Corollary 2.2, we can give the following result.

Corollary 2.3. Let A and B be finite cyclic monoids. Then the word problem
for Schützenberger-wreath product of these monoids, A3vB, is decidable.

Proof. By Theorem 2.2, we know that since the rewriting system of A3vB
is Noetherian and confluent, this system is complete. By this complete rewriting
system, each element of the monoid A3vB has a unique structure containing normal
form given in (2.2). Thus, the word problem for A3vB is decidable. □

3. An example

In this section, by considering two finite cyclic monoids, we give applications
of Theorem 2.2 and Corollary 2.2.

Let A = ⟨x;x3 = x2⟩ and B = ⟨y; y3 = y⟩ be two finite cyclic monoids. The
generator set of the Schützenberger-wreath product of A and B, A3vB, is

{x(2), x(1), x(0), zx(2),y2 , zx(2),y, zx(2),1, zx(1),y2 , zx(1),y, zx(1),1, zx(0),y2 , zx(0),y, zx(0),1, y}.

Now we order these generators as follows.

x(2) > x(1) > x(0) > zx(2),y2 > zx(2),y > zx(2),1 > zx(1),y2 >(3.1)

zx(1),y > zx(1),1 > zx(0),y2 > zx(0),y > zx(0),1 > y.

By the ordering given by (3.1), the monoid A3vB has the following complete
rewriting system.

(1) y3 → y,

(2) x(1)x(0) → x(0)x(1), x(2)x(0) → x(0)x(2), x(2)x(1) → x(1)x(2),

(3) (x(0))3 → (x(0))2, (x(1))3 → (x(1))2, (x(2))3 → (x(2))2,

(4) x(2)y → yx(1),

(5) x(0)y → yx(1), x(1)y → yx(2),

(6) z2x(0),1 → zx(0),1, z2x(0),y → zx(0),y, z2x(0),y2 → zx(0),y2 ,

z2x(1),1 → zx(1),1, z2x(1),y → zx(1),y, z2x(1),y2 → zx(1),y2 ,

z2x(2),1 → zx(2),1, z2x(2),y → zx(2),y, z2x(2),y2 → zx(2),y2 ,

(7) zx(0),yzx(0),1 → zx(0),1zx(0),y, zx(0),y2zx(0),1 → zx(0),1zx(0),y2 ,

zx(1),1zx(0),1 → zx(0),1zx(1),1, zx(1),yzx(0),1 → zx(0),1zx(1),y,

zx(1),y2zx(0),1 → zx(0),1zx(1),y2 , zx(2),1zx(0),1 → zx(0),1zx(2),1,

zx(2),yzx(0),1 → zx(0),1zx(2),y, zx(2),y2zx(0),1 → zx(0),1zx(2),y2 ,

zx(0),y2zx(0),y → zx(0),yzx(0),y2 , zx(1),1zx(0),y → zx(0),yzx(1),1,

zx(1),yzx(0),y → zx(0),yzx(1),y, zx(1),y2zx(0),y → zx(0),yzx(1),y2 ,
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zx(2),1zx(0),y → zx(0),yzx(2),1, zx(2),yzx(0),y → zx(0),yzx(2),y,

zx(2),y2zx(0),y → zx(0),yzx(2),y2 , zx(1),1zx(0),y2 → zx(0),y2zx(1),1,

zx(1),yzx(0),y2 → zx(0),y2zx(1),y, zx(1),y2zx(0),y2 → zx(0),y2zx(1),y2 ,

zx(2),1zx(0),y2 → zx(0),y2zx(2),1, zx(2),yzx(0),y2 → zx(0),y2zx(2),y,

zx(2),y2zx(0),y2 → zx(0),y2zx(2),y2 , zx(1),yzx(1),1 → zx(1),1zx(1),y,

zx(1),y2zx(1),1 → zx(1),1zx(1),y2 , zx(2),1zx(1),1 → zx(1),1zx(2),1,

zx(2),yzx(1),1 → zx(1),1zx(2),y, zx(2),y2zx(1),1 → zx(1),1zx(2),y2 ,

zx(1),y2zx(1),y → zx(1),yzx(1),y2 , zx(2),1zx(1),y → zx(1),yzx(2),1,

zx(2),yzx(1),y → zx(1),yzx(2),y, zx(2),y2zx(1),y → zx(1),yzx(2),y2 ,

zx(2),1zx(1),y2 → zx(1),y2zx(2),1, zx(2),yzx(1),y2 → zx(1),y2zx(2),y,

zx(2),y2zx(2),y2 → zx(1),y2zx(2),y2 , zx(2),yzx(2),1 → zx(2),1zx(2),y,

zx(2),y2zx(2),1 → zx(2),1zx(2),y2 , zx(2),y2zx(2),y → zx(2),yzx(2),y2 ,

(8) x(0)zx(0),1 → zx(0),1x
(0), x(0)zx(0),y → zx(0),yx

(0), x(0)zx(0),y2 → zx(0),y2x(0),

x(0)zx(1),1 → zx(1),1x
(0), x(0)zx(1),y → zx(1),yx

(0), x(0)zx(1),y2 → zx(1),y2x(0),

x(0)zx(2),1 → zx(2),1x
(0), x(0)zx(2),y → zx(2),yx

(0), x(0)zx(2),y2 → zx(2),y2x(0),

x(1)zx(0),1 → zx(0),1x
(1), x(1)zx(0),y → zx(0),yx

(1), x(1)zx(0),y2 → zx(0),y2x(1),

x(1)zx(1),1 → zx(1),1x
(1), x(1)zx(1),y → zx(1),yx

(1), x(1)zx(1),y2 → zx(1),y2x(1),

x(1)zx(2),1 → zx(2),1x
(1), x(1)zx(2),y → zx(2),yx

(1), x(1)zx(2),y2 → zx(2),y2x(1),

x(2)zx(0),1 → zx(0),1x
(2), x(2)zx(0),y →x(0),y x(2), x(2)zx(0),y2 → zx(0),y2x(2),

x(2)zx(1),1 → zx(1),1x
(2), x(2)zx(1),y → zx(1),yx

(2), x(2)zx(1),y2 → zx(1),y2x(2),

x(2)zx(2),1 → zx(2),1x
(2), x(2)zx(2),y → zx(2),yx

(2), x(2)zx(2),y2 → zx(2),y2x(2),

(9) zx(0),1y → yzx(0),y, zx(0),yy → yzx(0),y2 , zx(0),y2y → yzx(0),y,

zx(1),1y → yzx(1),y, zx(1),yy → yzx(1),y2 , zx(1),y2y → yzx(1),y,

zx(2),1y → yzx(2),y, zx(2),yy → yzx(2),y2 , zx(2),y2y → yzx(2),y.

To show that this system is confluent, we check all overlapping words as follows.
Overlapping of the relation (1) with itself:

(1) ∩ (1) : y4

Overlapping of the relation (2) with itself:
(2) ∩ (2) : x(2)x(1)x(0)

Overlapping of the relation (2) with relation (3):
(2) ∩ (3) : x(1)(x(0))3, (2) ∩ (3) : x(2)(x(0))3, (2) ∩ (3) : x(2)(x(1))3

Overlapping of the relation (2) with relation (5):
(2) ∩ (5) : x(1)x(0)y, (2) ∩ (5) : x(2)x(0)y, (2) ∩ (5) : x(2)x(1)y

Overlapping of the relation (2) with relation (8): There are twenty seven overlap-
ping words of this type. Here, we give six of them as application.

(2)∩(8) : x(1)x(0)zx(0),1, (2)∩(8) : x(1)x(0)zx(0),y, (2)∩(8) : x(1)x(0)zx(0),y2 ,
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(2)∩ (8) : x(2)x(1)zx(2),1, (2)∩ (8) : x(2)x(1)zx(2),y, (2)∩ (8) : x(2)x(1)zx(2),y2

Overlapping of the relation (3) with relation (2):

(3) ∩ (2) : x(1)3x(0), (3) ∩ (2) : x(2)3x(0), (3) ∩ (2) : x(2)3x(1)

Overlapping of the relation (3) with itself:

(3) ∩ (3) : x(0)4 , (3) ∩ (3) : x(1)4 , (3) ∩ (3) : x(2)4

Overlapping of the relation (3) with relation (4):

(3) ∩ (4) : x(2)3y
Overlapping of the relation (3) with relation (5):

(3) ∩ (5) : x(0)3y, (3) ∩ (5) : x(1)3y
Overlapping of the relation (3) with relation (8): There are twenty seven overlap-
ping words of this type. Here, we give six of them as application.

(3) ∩ (8) : x(0)3zx(0),1, (3) ∩ (8) : x(0)3zx(0),y, (3) ∩ (8) : x(0)3zx(0),y2 ,

(3) ∩ (8) : x(2)3zx(2),1, (3) ∩ (8) : x(2)3zx(2),y, (3) ∩ (8) : x(2)3zx(2),y2

Overlapping of the relation (4) with relation (1):
(4) ∩ (1) : x(2)y3

Overlapping of the relation (5) with relation (1):
(5) ∩ (1) : x(0)y3, (5) ∩ (1) : x(1)y3

Overlapping of the relation (6) with itself: There are twenty nine overlapping words
of this type. Here, we give three of them as application.

(6) ∩ (6) : z3
x(0),1

, (6) ∩ (6) : z3
x(0),y

, (6) ∩ (6) : z3
x(0),y2

Overlapping of the relation (6) with relation (7): There are thirty six overlapping
words of this type. Here, we give six of them as application.

(6) ∩ (7) : z2
x(0),y

zx(0),1, (6) ∩ (7) : z2
x(0),y2zx(0),1, (6) ∩ (7) : z2

x(0),y2zx(0),y,

(6) ∩ (7) : z2
x(2),y2zx(1),y2 , (6) ∩ (7) : z2

x(1),y
zx(0),1, (6) ∩ (7) : z2

x(2),y2zx(2),y

Overlapping of the relation (6) with relation (9): There are nine overlapping words
of this type. Here, we give three of them as application.

(6) ∩ (9) : z2
x(0),1

y, (6) ∩ (9) : z2
x(1),y

y, (6) ∩ (9) : z2
x(2),y2y

Overlapping of the relation (7) with relation (6): There are thirty six overlapping
words of this type. Here, we give six of them as application.

(7) ∩ (6) : zx(1),yz
2
x(0),1

, (7) ∩ (6) : zx(1),y2z2x(0),1
, (7) ∩ (6) : zx(2),1z

2
x(0),1

,

(7) ∩ (6) : zx(2),yz
2
x(2),1

, (7) ∩ (6) : zx(2),y2z2x(2),1
, (7) ∩ (6) : zx(2),y2z2x(2),y

Overlapping of the relation (7) with itself: There are eighty four overlapping words
of this type. Here, we give four of them as application.

(7) ∩ (7) : zx(0),y2zx(0),yzx(0),1, (7) ∩ (7) : zx(1),1zx(0),yzx(0),1,
(7) ∩ (7) : zx(2),y2zx(2),yzx(1),y, (7) ∩ (7) : zx(2),y2zx(2),yzx(1),y2

Overlapping of the relation (7) with relation (9): There are thirty six overlapping
words of this type. Here, we give six of them as application.

(7)∩ (9) : zx(0),yzx(0),1y, (7)∩ (9) : zx(0),y2zx(0),1y, (7)∩ (9) : zx(1),1zx(0),1y,
(7)∩ (9) : zx(2),yzx(2),1y, (7)∩ (9) : zx(2),y2zx(2),1y, (7)∩ (9) : zx(2),y2zx(2),yy

Overlapping of the relation (8) with relation (6): There are twenty seven overlap-
ping words of this type. Here, we give six of them as application.

(8) ∩ (6) : x(0)z2
x(0),1

, (8) ∩ (6) : x(0)z2
x(2),y2 , (8) ∩ (6) : x(1)z2

x(0),1
,
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(8) ∩ (6) : x(1)z2
x(2),y2 , (8) ∩ (6) : x(2)z2

x(0),1
, (8) ∩ (6) : x(2)z2

x(2),y2

Overlapping of the relation (8) with relation (7): There are one hundred eight
overlapping words of this type. Here, we give four of them as application.

(8) ∩ (7) : x(0)zx(0),yzx(0),1 (8) ∩ (7) : x(0)zx(1),1zx(0),y,

(8) ∩ (7) : x(0)zx(2),1zx(0),1 (8) ∩ (7) : x(0)zx(2),1zx(0),y2

Overlapping of the relation (8) with relation (6): There are twenty seven overlap-
ping words of this type. Here, we give six of them as application.

(8) ∩ (6) : x(0)z2
x(0),1

, (8) ∩ (6) : x(0)z2
x(1),y

, (8) ∩ (6) : x(1)z2
x(0),y

,

(8) ∩ (6) : x(1)z2
x(0),y2 , (8) ∩ (6) : x(1)z2

x(2),y2 , (8) ∩ (6) : x(2)z2
x(2),y2

Overlapping of the relation (8) with relation (9): There are twenty seven overlap-
ping words of this type. Here, we give six of them as application

(8) ∩ (9) : x(0)zx(0),1y, (8) ∩ (9) : x(0)zx(0),yy, (8) ∩ (9) : x(0)zx(2),y2y,

(8) ∩ (9) : x(1)zx(1),y2y, (8) ∩ (9) : x(2)zx(0),yy, (8) ∩ (9) : x(2)zx(2),y2y
Overlapping of the relation (9) with relation (1): There are nine overlapping words
of this type. Here, we give three of them as application

(9) ∩ (1) : zx(0),1y
3, (9) ∩ (1) : zx(1),1y

3, (9) ∩ (1) : zx(2),y2y3.
In fact, all these above overlappinng words are resolved by reduction steps. We
show two of them as an example.

(2) ∩ (8) : x(1)x(0)zx(0),1 −→
{

x(1)x(0)zx(0),1 → x(0)zx(0),1x
(1) → zx(0),1x

(0)x(1)

x(1)zx(0),1x
(0) → zx(0),1x

(1)x(0) → zx(0),1x
(0)x(1)

(6) ∩ (7) : z2
x(1),y

zx(0),1 −→
{

zx(1),yzx(0),1 → zx(0),1zx(1),y

zx(1),yzx(0),1zx(1),y → zx(0),1z
2
x(1),y

→ zx(0),1zx(1),y

Since the rewriting system given with (1)-(9) is Noetherian and confluent, it is
complete.

Now we consider normal form structure of an arbitrary word u ∈ A3vB. It is
easily seen that it is of the form;

ypWz
x(i),ym

W ′
(x(q))t (0 ⩽ p, q, i, m, t ⩽ 2),(3.2)

whereWz
x(i),ym

andW ′
(x(q))t are reduced words obtained by generators zx(i),ym and

(x(q))
t
, respectively. For example, the words y(x(2))

2
and zx(i),1zx(0),y2(x(1))

2
x(2)

are of the forms given in (3.2).
Finally, we can say that the number of generators and relations of A3vB are 13

and 91, respectively. We can easily see these results by taking s = 3 in the generator
number formula (s+ 1)

2− s and relator number formula 1
2 (s

4+2s3+4s2+3s+2)
in Corollary 2.1.
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