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EIGENVALUES OF PARAMETER-DEPENDENT
STURM-LIOUVILLE PROBLEMS WITH A FROZEN
ARGUMENT ON TIME SCALES

Zeynep Durna and A. Sinan Ozkan

ABSTRACT. In this paper, a boundary value problem established with the
Sturm-Liouville equation which has a frozen argument, and with parameter-
dependent boundary conditions is considered on time scales. Some properties
of the eigenvalues of the problem are investigated on a finite time scale as well
as on a union of two intervals.

1. Introduction and Preliminaries

Let us consider the following boundary value problem

(1.1) —yAA (1) + g(t)y(a) = A7 (t), t € T
(1.2) U(y) == a1 (N y(a) + a2 (\) y* (a) =0,
(1.3) V(y) :==b1 (N y (B) + b2 (N) y> (B) = 0.

where ¢(t) is a real-valued continuous function, a € T* := T\ (p (sup T),sup T] is
the frozen argument, y°(t) = y(o(t)), « = inf T, § = p(supT), a # 3, a; (A) and
b; (M) are real polynomials for i,j = 1,2, and ) is the complex spectral parameter.
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Asuming d, := deg (a1) = deg (a2) and dp := max{deg (b1),deg (b2)}, we can take
da da

Z ap A, az (N) = Z asi A",

k=0 k=0

db db
br(A) = D biA, b (A) =) by
k=0 k=0

a1 (A)

In a contiuous interval, the spectral analysis of boundary value problems for the
Sturm-Liouville equation with a frozen argument are studied in [3], [10], [11], [17],
[21], [24], [28], and references therein. These kinds of problems which appear
in various applications are related to some non-local boundary value problems.
(see [4], [7], [20], and [29])

The Sturm-Liouville problems without a frozen argument on time scales have
been investigated in several studies (see e.g. [1], [2], [5], [6], [13]- [16], [18], [19],
[25]- [27], [30]). However, there is only two publications about the Sturm-Liouville
equation with a frozen argument on a time scale ( [12] and [22])

The aim of this paper is to investigate some important properties of solutions
and eigenvalues of problem (1)-(3). Before begining, it must be noted that we refer
the publications [8], [9] and [23] for the basic notation and terminology of the time
scales theory.

2. Main results

Let S(¢,\) and C(t, \) be the solutions of (1) with the initial conditions

(2.1) S(a,A) = 0,58%a,\) =1,

(2.2) C(a,\) = 1,C?a,\) =0,

respectively. Clearly, S(¢, A) and C(¢, \) satisfy
SAR(EN) +AS(t,A) = 0
CAR(t,A) +ACo(t,N) = q(t),

respectively, and so these functions and their A-derivatives are entire on A for each
fixed ¢ (see [25]).
It is clear that the zeros of the function

(2.3) A(N) = det ( g((g; “//v((gg ) 7

which is also entire, coincide with the eigenvalues of the problem (1)-(3).

We aim to examine the problem (1)-(3) on two different version of T.
First, we asume T is a finite time scale such that

T={p" (@), (a) % (a) ,p(a) @, 0(a), 0%(a), s ™ (a), 0™ (@)},

where 0/ = 0/ oo, p! = pi~topforj =2, p" (a) = a, c™ () = B, m > 2, and
r>=2.
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THEOREM 2.1. If a1q,p(a) — asq, # 0, eigenvalues-number of (1)-(3) is as
follows with multiplications

do +dp +1n — 2, deg (b2) > deg (b1)
(2.4) 5:=

do +dp+n—3, deg(by)>deg(b)+1 °
where n is the number of elements of T and equals clearly to m +r + 1.

PROOF. It can be calculated that

_ u(c) v(e)
AN = det(U(S) V(S))

t( a1 (\) C () + a2 (\) C* () b1 (N) C (B) +b2 (A) C2 (B) )
¢ a1 S

a (V) S (@) +az(X) S% (a) b1 (A)S(B) +b2(N) S (B)
= aa(A)b (N)[C(a)S (B ) S(@) C(B)]

+ar (A) bz (A) [C (@) 2 (8) = S (a) C* (B)]

+az (A) b1 (A) [C2 () S (8) — 52 (a) C (B)]

+az (A) bz (A) [C2 (@) 2 (8) — 52 (a) C* (B)] -

In [25], it is given the following equalities

S( ) = (~1)" 1 (a) [ (@) (a) o (@) N1 4O (2),

1

S, A) = (1) (@) 1" (a) o (@) s’ (a)}2 240 (A9,

m—3

S8 = (1" [(a) 7 (@) o™ " (@)] N2 (a) 4 O (A9)

m—2

S7(B,A) = (-1 )m+1 [u (a) u° (a) ...u" (a)]2 )\mfllf’"‘l (a) + O (A™2)

C (@) = (1) [0 (@) " (a) o (@)] X4 O (1)

r—1

07 (@0 = (- [ (@) (@)™ (@) N0 (32,

2

(@™ @] 17 (@) A2 4 0 (),

C(B.N) = (~1)" 1 (a) [ (a) p”

Co(B,2) = (=)™ u(0) [ (@) " (0) o (a)ruam’l (a) A= 1+0 (Am2)

where O(A!) denotes a polynomial whose degree is [. Taking into account asump-
tions on degrees of polynomials a;(\) and b; () it can be obtained that for deg (b2) >

deg (b1),

bag d _ _
A(\) = b A atdy a a) — a /\da,+db+n 2 +0 /\da,+db+n 3 ,
() = st X g, (o) — az, ( )
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and for deg (b1) > deg (b2) + 1,

A(}\) _ jzg)) )\daerb [alda,u(a) _ a2da} )\da+db+n73 + O()\da+db+nf4).

Hence, the proof is completed. O

COROLLARY 2.1. The eigenvalues-number of (1)-(3) does not depend on q(t)
or a but elements-number of T and the polynomials in the boundary conditions (2)
and (3).

REMARK 2.1. If we take the time scale simply as T ={1, 2, ...,n}, we can find all

eigenvalue of the problem solving the equation det ( g =0, where P = P, + P,
0 0 0 0 0 0 I A=-21 (n—2)xn
a.column
0 0 0 —q (1) 0 --- 0
00 - 0 —q(2) 0 --- 0
Py, = o0 --- 0 _q(g) 0 - 0 ,and
00 - 0 —g(n=2) 0 - 0/ .,
Q= a1(A) —az(A) a2(A) 0 0 --- O 0 0
0 0 00 -+ 0 bi(A)—b(N) b(N) /), -

EXAMPLE 2.1. Consider the following problem on T ={0,1,2,3,4,5,6}
—y22 (1) +y(3) = Ay (1), t €40,1,2,3,4}
.0 BN+ 1Dy (1) + (222 =3X=3) y2 (1) =0,
My (5)+ (A2 =1)y» (5) =0.

FEigenvalues of L are the zeros of the polynomial

P(A) = =2 + TA8 — 19A7 + 3206 — 49)° + 572 — 2903 — 24)\% + 54\ — 20.
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Now, we move our study to another special time scale: T = [a,d1] U [d2, 5],
where o < a < §; < d < 8. Suppose a € (@, 1) and 8 — 63 = 61 — . The similar
analysis can be done for a € (2, 3).

The following asymptotic relations for the solutions S(¢, A) and C(t, A) can be
proved by using a method similar to that in [26].

sin vV (t — a)
VA

82V X cos VX (01 — a) sin VA(0y — t)
+ O (expr|(t —a—9))

y te [047(51},
25) St =
NAS [627B]a

cosVA(t—a), t € [a,dy),
(2.6) SA(t,A) = —0%Xcos VA (81 — a) cos VA(02 — 1)

+0 (\Aexp |7] (t —a— 6)) » tE [0, B,
cos VA (t—a)+ O (\%exph [t — a|> , t € oy, 1],

2.7) ¢t = —8%Xsin VA (0] — a) sin VA(5y — 1)
) te [5275}7

+0 (\f)\exp|7| (t—a—é))

—VAsinVA(t —a)+ O (exp ||t —al), tE€a,d),

(2.8)  CA(t,\) = 82232 sin VA (81 — a) cos VA(6y — 1)

+O(Nexp|7|(t —a—106)) ’ t € [62, ],

where § = d5 — 01, 7 =Imv/A and O denotes Landau’s symbol.

Since 8 — d2 = 01 — «, by calculating directly, it can be obtained from (8)-(11)
that the equality

AN [smﬁ(ﬁ — )+ 0 (M)} , degby > degh,

VA
(2.9) A(N) =
B()) [0052\5(5 —02)+ O (M\%ﬂké))] , degby < degby
is valid for |\| = oo, where A(\) = %‘Szagdabgdb)\da"’dﬁ% and

52
B(/\) _ T5a2dabldb)\da+db+l-
Consider the region

Ge :={ e C: A= p?

p—po|l>e n=123,.}
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355, degba > degby
?’L-‘r%)ﬂ'

W7 deg b2 < deg bl
exist some positive constants C. for each e, such that, the inequality

[AN) = C A" exp2|7[ (B — 02)

where ¢ is sufficiently small number, and p? = . There

do +dp+ 3, degby > degh

de +dp+1, degby < degby
Consequently, applying Rouche’s theorem to A(X) on G, := {A € C: XA =

0% lpl < p% + &} for sufficiently small § and sufficiently large n, we obtain the

following theorem.

holds for sufficiently large A € G,,, where v = {

THEOREM 2.2. The problem (1)-(3) on T = [, 61]U[d2, B8] has countable many
eigenvalues, namely X\, which are real for sufficiently large n. Moreover, the fol-
lowing asymptotic formula holds for n — occ.

mr+0<1)’ deg by > deg by
Q(ﬂ—éz) n
(2.10) V=
W+0<1) deg by < degh
2(ﬂ—(52) n ) g 02 g 01
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