BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS/BULLETIN Bull. Int. Math. Virtual Inst., 14(2)(2024), 281–287 DOI: 10.7251/BIMVI2402281D

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

EIGENVALUES OF PARAMETER-DEPENDENT STURM-LIOUVILLE PROBLEMS WITH A FROZEN ARGUMENT ON TIME SCALES

Zeynep Durna and A. Sinan Ozkan

Abstract. In this paper, a boundary value problem established with the Sturm-Liouville equation which has a frozen argument, and with parameterdependent boundary conditions is considered on time scales. Some properties of the eigenvalues of the problem are investigated on a finite time scale as well as on a union of two intervals.

1. Introduction and Preliminaries

Let us consider the following boundary value problem

 $-y^{\Delta\Delta}(t) + q(t)y(a) = \lambda y^{\sigma}(t), t \in \mathbb{T}^{\kappa^2}$ (1.1)

(1.2)
$$
U(y) := a_1(\lambda) y(\alpha) + a_2(\lambda) y^{\Delta}(\alpha) = 0,
$$

(1.3) $V(y) := b_1(\lambda) y(\beta) + b_2(\lambda) y^{\Delta}(\beta) = 0.$

where $q(t)$ is a real-valued continuous function, $a \in \mathbb{T}^{\kappa} := \mathbb{T} \setminus (\rho(\sup \mathbb{T}), \sup \mathbb{T}]$ is the frozen argument, $y^{\sigma}(t) = y(\sigma(t))$, $\alpha = \inf \mathbb{T}$, $\beta = \rho(\sup \mathbb{T})$, $\alpha \neq \beta$, $a_i(\lambda)$ and $b_i(\lambda)$ are real polynomials for $i, j = 1, 2$, and λ is the complex spectral parameter.

281

²⁰²⁰ Mathematics Subject Classification. Primary 45C05; Secondary 34N05, 34B24, 34C10. Key words and phrases. Dynamic equations, time scales, measure chains, eigenvalue problems, Sturm-Liouville theory, frozen argument.

Communicated by Dusko Bogdanic.

Asuming $d_a := \deg(a_1) = \deg(a_2)$ and $d_b := \max{\deg(b_1), \deg(b_2)}$, we can take

$$
a_1(\lambda) = \sum_{k=0}^{d_a} a_{1k} \lambda^k, \quad a_2(\lambda) = \sum_{k=0}^{d_a} a_{2k} \lambda^k,
$$

$$
b_1(\lambda) = \sum_{k=0}^{d_b} b_{1k} \lambda^k, \quad b_2(\lambda) = \sum_{k=0}^{d_b} b_{2k} \lambda^k.
$$

In a contiuous interval, the spectral analysis of boundary value problems for the Sturm-Liouville equation with a frozen argument are studied in [3], [10], [11], [17], [21], [24], [28], and references therein. These kinds of problems which appear in various applications are related to some non-local boundary value problems. (see [4], [7], [20], and [29])

The Sturm-Liouville problems without a frozen argument on time scales have been investigated in several studies (see e.g. [1], [2], [5], [6], [13]- [16], [18], [19], [25]- [27], [30]). However, there is only two publications about the Sturm-Liouville equation with a frozen argument on a time scale ([12] and [22])

The aim of this paper is to investigate some important properties of solutions and eigenvalues of problem $(1)-(3)$. Before begining, it must be noted that we refer the publications [8], [9] and [23] for the basic notation and terminology of the time scales theory.

2. Main results

Let $S(t, \lambda)$ and $C(t, \lambda)$ be the solutions of (1) with the initial conditions

(2.1)
$$
S(a,\lambda) = 0, S^{\Delta}(a,\lambda) = 1,
$$

(2.2)
$$
C(a,\lambda) = 1, C^{\Delta}(a,\lambda) = 0,
$$

respectively. Clearly, $S(t, \lambda)$ and $C(t, \lambda)$ satisfy

$$
S^{\Delta\Delta}(t,\lambda) + \lambda S^{\sigma}(t,\lambda) = 0
$$

$$
C^{\Delta\Delta}(t,\lambda) + \lambda C^{\sigma}(t,\lambda) = q(t),
$$

respectively, and so these functions and their Δ -derivatives are entire on λ for each fixed t (see [25]).

It is clear that the zeros of the function

(2.3)
$$
\Delta(\lambda) := \det \left(\begin{array}{cc} U(C) & V(C) \\ U(S) & V(S) \end{array} \right),
$$

which is also entire, coincide with the eigenvalues of the problem $(1)-(3)$.

We aim to examine the problem $(1)-(3)$ on two different version of \mathbb{T} . First, we asume T is a finite time scale such that

$$
\mathbb{T} = \left\{ \rho^{r}(a), \rho^{r-1}(a), ..., \rho^{2}(a), \rho(a), a, \sigma(a), \sigma^{2}(a), ..., \sigma^{m-1}(a), \sigma^{m}(a) \right\},\
$$

where $\sigma^j = \sigma^{j-1} \circ \sigma$, $\rho^j = \rho^{j-1} \circ \rho$ for $j \geq 2$, $\rho^r(a) = \alpha$, $\sigma^{m-1}(\alpha) = \beta$, $m \geq 2$, and $r \geqslant 2$.

THEOREM 2.1. If $a_{1d_a}\mu(\alpha) - a_{2d_a} \neq 0$, eigenvalues-number of (1)-(3) is as follows with multiplications

(2.4)
$$
s := \begin{cases} d_a + d_b + n - 2, & \deg(b_2) \geq \deg(b_1) \\ d_a + d_b + n - 3, & \deg(b_1) > \deg(b_2) + 1 \end{cases}
$$

where *n* is the number of elements of $\mathbb T$ and equals clearly to $m + r + 1$.

PROOF. It can be calculated that

$$
\Delta(\lambda) = \det \begin{pmatrix} U(C) & V(C) \\ U(S) & V(S) \end{pmatrix}
$$

=
$$
\det \begin{pmatrix} a_1(\lambda) C(\alpha) + a_2(\lambda) C^{\Delta}(\alpha) & b_1(\lambda) C(\beta) + b_2(\lambda) C^{\Delta}(\beta) \\ a_1(\lambda) S(\alpha) + a_2(\lambda) S^{\Delta}(\alpha) & b_1(\lambda) S(\beta) + b_2(\lambda) S^{\Delta}(\beta) \end{pmatrix}
$$

=
$$
a_1(\lambda) b_1(\lambda) [C(\alpha) S(\beta) - S(\alpha) C(\beta)]
$$

+
$$
a_1(\lambda) b_2(\lambda) [C(\alpha) S^{\Delta}(\beta) - S(\alpha) C^{\Delta}(\beta)]
$$

+
$$
a_2(\lambda) b_1(\lambda) [C^{\Delta}(\alpha) S(\beta) - S^{\Delta}(\alpha) C(\beta)]
$$

+
$$
a_2(\lambda) b_2(\lambda) [C^{\Delta}(\alpha) S^{\Delta}(\beta) - S^{\Delta}(\alpha) C^{\Delta}(\beta)].
$$

In [25], it is given the following equalities

$$
S(\alpha, \lambda) = (-1)^{r} \mu^{\rho} (a) \left[\mu^{\rho^{2}} (a) \mu^{\rho^{3}} (a) \ldots \mu^{\rho^{r}} (a) \right]^{2} \lambda^{r-1} + O(\lambda^{r-2}),
$$

\n
$$
S^{\sigma}(\alpha, \lambda) = (-1)^{r-1} \mu^{\rho} (a) \left[\mu^{\rho^{2}} (a) \mu^{\rho^{3}} (a) \ldots \mu^{\rho^{r-1}} (a) \right]^{2} \lambda^{r-2} + O(\lambda^{r-3}),
$$

\n
$$
S(\beta, \lambda) = (-1)^{m} \left[\mu (a) \mu^{\sigma} (a) \ldots \mu^{\sigma^{m-3}} (a) \right]^{2} \lambda^{m-2} \mu^{\sigma^{m-2}} (a) + O(\lambda^{m-3}),
$$

\n
$$
S^{\sigma}(\beta, \lambda) = (-1)^{m+1} \left[\mu (a) \mu^{\sigma} (a) \ldots \mu^{\sigma^{m-2}} (a) \right]^{2} \lambda^{m-1} \mu^{\sigma^{m-1}} (a) + O(\lambda^{m-2}),
$$

\n
$$
C(\alpha, \lambda) = (-1)^{r} \left[\mu^{\rho} (a) \mu^{\rho^{2}} (a) \ldots \mu^{\rho^{r}} (a) \right]^{2} \lambda^{r} + O(\lambda^{r-1}),
$$

\n
$$
C^{\sigma} (\alpha, \lambda) = (-1)^{r-1} \left[\mu^{\rho} (a) \mu^{\rho^{2}} (a) \ldots \mu^{\rho^{r-1}} (a) \right]^{2} \lambda^{r-1} + O(\lambda^{r-2}),
$$

\n
$$
C(\beta, \lambda) = (-1)^{m} \mu (a) \left[\mu^{\sigma} (a) \mu^{\sigma^{2}} (a) \ldots \mu^{\sigma^{m-3}} (a) \right]^{2} \mu^{\sigma^{m-2}} (a) \lambda^{m-2} + O(\lambda^{m-3}),
$$

\n
$$
C^{\sigma}(\beta, \lambda) = (-1)^{m+1} \mu (a) \left[\mu^{\sigma} (a) \mu^{\sigma^{2}} (a) \ldots \mu^{\sigma^{m-2}} (a) \right]^{2} \mu^{\sigma^{m-1}} (a) \
$$

where $O(\lambda^l)$ denotes a polynomial whose degree is l. Taking into account asumptions on degrees of polynomials $a_i(\lambda)$ and $b_i(\lambda)$ it can be obtained that for deg $(b_2) \geq$ $\deg(b_1),$

$$
\Delta(\lambda) = \frac{b_{2d_b}}{\mu(\alpha)\mu(\beta)} \lambda^{d_a+d_b} \left[a_{1d_a}\mu(\alpha) - a_{2d_a} \right] \lambda^{d_a+d_b+n-2} + O(\lambda^{d_a+d_b+n-3}),
$$

and for $deg(b_1) > deg(b_2) + 1$,

$$
\Delta(\lambda) = \frac{b_{1d_b}}{\mu(\alpha)} \lambda^{d_a + d_b} \left[a_{1d_a} \mu(\alpha) - a_{2d_a} \right] \lambda^{d_a + d_b + n - 3} + O(\lambda^{d_a + d_b + n - 4}).
$$

Hence, the proof is completed. $\hfill \square$

COROLLARY 2.1. The eigenvalues-number of $(1)-(3)$ does not depend on $q(t)$ or a but elements-number of $\mathbb T$ and the polynomials in the boundary conditions (2) and (3).

REMARK 2.1. If we take the time scale simply as $\mathbb{T} = \{1, 2, ..., n\}$, we can find all eigenvalue of the problem solving the equation det $\begin{pmatrix} P \\ C \end{pmatrix}$ \it{Q} $= 0$, where $P = P_1 + P_2$,

$$
P_1 = \begin{pmatrix} 1 & \lambda - 2 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & \lambda - 2 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & \lambda - 2 & 1 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 1 & \lambda - 2 & 1 \end{pmatrix}_{(n-2)\times n},
$$

\n
$$
P_2 = \begin{pmatrix} 0 & 0 & \cdots & 0 & -q(1) & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & -q(2) & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & -q(3) & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & -q(n-2) & 0 & \cdots & 0 \end{pmatrix}_{(n-2)\times n},
$$
 and
\n
$$
Q = \begin{pmatrix} a_1(\lambda) - a_2(\lambda) & a_2(\lambda) & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & b_1(\lambda) - b_2(\lambda) & b_2(\lambda) \end{pmatrix}_{2\times n}.
$$

EXAMPLE 2.1. Consider the following problem on $\mathbb{T} = \{0, 1, 2, 3, 4, 5, 6\}$

$$
L: \begin{cases} -y^{\Delta\Delta}(t) + y(3) = \lambda y^{\sigma}(t), \ t \in \{0, 1, 2, 3, 4\} \\ (3\lambda^2 + 1)y(1) + (2\lambda^2 - 3\lambda - 3) y^{\Delta}(1) = 0, \\ \lambda^4 y(5) + (\lambda^2 - 1) y^{\Delta}(5) = 0. \end{cases}
$$

Eigenvalues of L are the zeros of the polynomial

$$
p(\lambda) = -\lambda^9 + 7\lambda^8 - 19\lambda^7 + 32\lambda^6 - 49\lambda^5 + 57\lambda^4 - 29\lambda^3 - 24\lambda^2 + 54\lambda - 20.
$$

Now, we move our study to another special time scale: $\mathbb{T} = [\alpha, \delta_1] \cup [\delta_2, \beta],$ where $\alpha < a < \delta_1 < \delta_2 < \beta$. Suppose $a \in (\alpha, \delta_1)$ and $\beta - \delta_2 = \delta_1 - \alpha$. The similar analysis can be done for $a \in (\delta_2, \beta)$.

The following asymptotic relations for the solutions $S(t, \lambda)$ and $C(t, \lambda)$ can be proved by using a method similar to that in [26].

(2.5)
$$
S(t,\lambda) = \begin{cases} \frac{\sin\sqrt{\lambda}(t-a)}{\sqrt{\lambda}}, t \in [\alpha,\delta_1], \\ \delta^2 \sqrt{\lambda} \cos\sqrt{\lambda}(\delta_1-a) \sin\sqrt{\lambda}(\delta_2-t) \\ + O(\exp|\tau|(t-a-\delta)) \end{cases}, t \in [\delta_2, \beta],
$$

(2.6)
$$
S^{\Delta}(t,\lambda) = \begin{cases} \cos\sqrt{\lambda}(t-a), \ t \in [\alpha,\delta_1), \\ -\delta^2\lambda\cos\sqrt{\lambda}(\delta_1-a)\cos\sqrt{\lambda}(\delta_2-t) \\ +O(\sqrt{\lambda}\exp|\tau|(t-a-\delta)) \end{cases}, \ t \in [\delta_2,\beta],
$$

(2.7)
$$
C(t,\lambda) = \begin{cases} \cos\sqrt{\lambda}(t-a) + O\left(\frac{1}{\sqrt{\lambda}}\exp|\tau||t-a|\right), & t \in [\alpha,\delta_1], \\ -\delta^2\lambda\sin\sqrt{\lambda}(\delta_1-a)\sin\sqrt{\lambda}(\delta_2-t) \\ + O\left(\sqrt{\lambda}\exp|\tau||(t-a-\delta)\right), & t \in [\delta_2,\beta], \end{cases}
$$

(2.8)
$$
C^{\Delta}(t,\lambda) = \begin{cases} -\sqrt{\lambda}\sin\sqrt{\lambda}(t-a) + O\left(\exp|\tau| |t-a|\right), & t \in [\alpha,\delta_1), \\ \delta^2\lambda^{3/2}\sin\sqrt{\lambda}(\delta_1-a)\cos\sqrt{\lambda}(\delta_2-t) \\ + O\left(\lambda\exp|\tau| (t-a-\delta)\right), & t \in [\delta_2,\beta], \end{cases}
$$

where $\delta = \delta_2 - \delta_1$, $\tau = \text{Im}\sqrt{\lambda}$ and O denotes Landau's symbol.

Since $\beta - \delta_2 = \delta_1 - \alpha$, by calculating directly, it can be obtained from (8)-(11) that the equality

$$
(2.9) \quad \Delta(\lambda) = \begin{cases} A(\lambda) \left[\sin 2\sqrt{\lambda} \left(\beta - \delta_2 \right) + O\left(\frac{\exp|\tau|(\beta - \alpha - \delta)}{\sqrt{\lambda}} \right) \right], & \deg b_2 \geqslant \deg b_1 \\ B(\lambda) \left[\cos 2\sqrt{\lambda} \left(\beta - \delta_2 \right) + O\left(\frac{\exp|\tau|(\beta - \alpha - \delta)}{\sqrt{\lambda}} \right) \right], & \deg b_2 < \deg b_1 \end{cases}
$$

is valid for $|\lambda| \to \infty$, where $A(\lambda) = \frac{-\delta^2}{2}$ $\frac{1}{2}a_{2d_{a}}b_{2d_{b}}\lambda^{d_{a}+d_{b}+\frac{3}{2}}$ and $B(\lambda) = \frac{-\delta^2}{2}$ $\frac{\delta^2}{2} a_{2d_a} b_{1d_b} \lambda^{d_a + d_b + 1}.$ Consider the region

$$
G_{\varepsilon} := \{ \lambda \in \mathbb{C} : \lambda = \rho^2, \left| \rho - \rho_n^0 \right| > \varepsilon, \ n = 1, 2, 3, \ldots \}
$$

where ε is sufficiently small number, and $\rho_n^0 =$ $\int \frac{n\pi}{2(\beta-\delta_2)}, \deg b_2 \geqslant \deg b_1$ $\left(n+\frac{1}{2}\right)\pi$ $\frac{\binom{n+\frac{1}{2}}{n}}{2(\beta-\delta_2)}, \deg b_2 < \deg b_1$. There exist some positive constants C_{ε} for each ε , such that, the inequality

 $|\Delta(\lambda)| \geqslant C_{\varepsilon} |\lambda|^{\gamma} \exp 2 |\tau| \left(\beta - \delta_{2}\right)$

holds for sufficiently large $\lambda \in G_n$, where $\gamma = \begin{cases} d_a + d_b + \frac{3}{2} & \text{deg } b_2 \geqslant \text{deg } b_1 \\ d_a + d_b + \frac{3}{2} & \text{deg } b_2 \geqslant \text{deg } b_1 \end{cases}$ $d_a + d_b + 1$, $\deg b_2 < \deg b_1$
 $d_a + d_b + 1$, $\deg b_2 < \deg b_1$

Consequently, applying Rouche's theorem to $\Delta(\lambda)$ on $G_n := {\lambda \in \mathbb{C} : \lambda =$ ρ^2 , $|\rho| < \rho_n^0 + \delta$ for sufficiently small δ and sufficiently large n, we obtain the following theorem.

THEOREM 2.2. The problem (1)-(3) on $\mathbb{T} = [\alpha, \delta_1] \cup [\delta_2, \beta]$ has countable many eigenvalues, namely λ_n which are real for sufficiently large n. Moreover, the following asymptotic formula holds for $n \to \infty$.

.

(2.10)
$$
\sqrt{\lambda_n} = \begin{cases} \frac{n\pi}{2(\beta - \delta_2)} + O\left(\frac{1}{n}\right), & \deg b_2 \geqslant \deg b_1 \\ \frac{(n + \frac{1}{2})\pi}{2(\beta - \delta_2)} + O\left(\frac{1}{n}\right), & \deg b_2 < \deg b_1 \end{cases}
$$

References

- 1. ˙I. Adalar and A. S. Ozkan, An interior inverse Sturm–Liouville problem on a time scale, Analysis and Mathematical Physics, 10(4)(2020), 1–10.
- 2. R. P. Agarwal, M. Bohner, and P. J. Y. Wong, Sturm-Liouville eigenvalue problems on time scales, Appl. Math. Comput., 99(1999), 153–166.
- 3. S. Albeverio, R. O. Hryniv, and L. Nizhink, Inverse Spectral Problems for non-local Strum Liouville operators, Inverse Problems, 23(2007), 523–535.
- 4. S. Albeverio and L. Nizhnik, Schrödinger operators with nonlocal point interactions, J. Math. Anal. Appl., 332(2)(2007), 884–895.
- 5. P. Amster, P. De N´apoli, and J. P. Pinasco, Eigenvalue distribution of second-order dynamic equations on time scales considered as fractals, J. Math. Anal. Appl., 343(2008), 573–584.
- 6. D. Barilla, M. Bohner, S. Heidarkhani, and S. Moradi, Existence results for dynamic Sturm– Liouville boundary value problems via variational methods, Applied Mathematics and Computation, 409(2021) 125614.
- 7. F. A. Berezin and L. D. Faddeev, Remarks on Schrödinger equation, Sov. Math.--Dokl., 137(1961), 1011–4.
- 8. M. Bohner and A. Peterson, Dynamic Equations on Time Scales. Birkhäuser, Boston MA, 2001.
- 9. M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston MA, 2003.
- 10. N. P. Bondarenko, S. A. Buterin, and S. V. Vasiliev, An inverse problem for Sturm-Liouville operators with frozen argument, J. Math. Anal. Appl., 472(1)(2019), 1028–1041.
- 11. S. Buterin and M. Kuznetsova, On the inverse problem for Sturm–Liouville-type operators with frozen argument: rational case, Comp. Appl. Math., 39(5)(2020), 1-15.
- 12. Z. Durna and A. S. Ozkan, Eigenvalues of problems for a class of Sturm Liouville operators on two different time scales, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(3)(2002), 720–730.
- 13. L. Erbe and S. Hilger, Sturmian theory on measure chains, Differ. Equ. Dyn. Syst., 1(1993), 223–244.
- 14. L. Erbe and A. Peterson, Eigenvalue conditions and positive solutions, J. Differ. Equ. Appl., 6(2000), 165–191.
- 15. G. S. Guseinov, Eigenfunction expansions for a Sturm-Liouville problem on time scales, Int. J. Differ. Equ., 2(2007), 93–104.
- 16. S. Heidarkhani, S. Moradi, and G. Caristi, Existence results for a dynamic Sturm–Liouville boundary value problem on time scales, Optimization Letters, 15(2021), 2497–2514.
- 17. Y. T. Hu, N. P. Bondarenko, and C. F. Yang, Traces and inverse nodal problem for Sturm– Liouville operators with frozen argument, Applied Mathematics Letters, 102(2020), 106096.
- 18. A. Huseynov and E. Bairamov, On expansions in eigenfunctions for second order dynamic equations on time scales, Nonlinear Dyn. Syst. Theory, 9(2009), 7–88.
- 19. Q. Kong, Sturm-Liouville problems on time scales with separated boundary conditions, Results Math., 52(2008), 111–121.
- 20. A. M. Krall, The development of general differential and general differential-boundary systems, Rocky Mount. J. Math., 5(1975), 493–542.
- 21. M. A. Kuznetsova, Necessary and sufficient conditions for the spectra of the Sturm–Liouville operators with frozen argument, Appl Math Lett., 131(2022), 108035.
- 22. M. A. Kuznetsova, Inverse problem for the Sturm–Liouville operator with a frozen argument on the time scale, Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 208(2022), 49-62.
- 23. V. Lakshmikantham, S. Sivasundaram, and B. Kaymakcalan, Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Dordrecht, 1996.
- 24. L. Nizhink, Inverse Eigenvalue Problems for non-local Sturm Liouville Problems, Methods Funct. Anal. Topology, 15(1)(2009), 41-47.
- 25. A. S.Ozkan, Sturm-Liouville operator with parameter-dependent boundary conditions on time scales. Electron. J. Differential Equations, 212(2017), 1–10.
- 26. A. S.Ozkan and ˙I. Adalar, Half-inverse Sturm-Liouville problem on a time scale, Inverse Probl., 36(2020), 025015.
- 27. B. P. Rynne, L2 spaces and boundary value problems on time-scales, J. Math. Anal. Appl., 328(2007), 1217–1236.
- 28. T. M. Tsai, et all, Sturm–Liouville-type operators with frozen argument and Chebyshev polynomials, Math Meth Appl Sci., 45(2022), 9635–9652.
- 29. A. D. Wentzell, On boundary conditions for multidimensional diffusion processes, Theory Probab. 4(1959), 164–77. (Engl. Transl.)
- 30. V. A. Yurko, Inverse Problems for Sturm-Liouville Differential Operators on Closed Sets. Tamkang Journal of Mathematics, 50(3)(2019), 199–206.

Received by editors 31.7.2024; Revised version 27.10.2024; Available online 30.11.2024.

Zeynep Durna, Department of Mathematics, Sivas Cumhuriyet University, Sivas, **TURKIYE**

Email address: zeynepdurna14@gmail.com

A. Sinan Ozkan, Department of Mathematics, Sivas Cumhuriyet University, Sivas, Turkiye

Email address: sozkan@cumhuriyet.edu.tr