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QUOTIENT NEARNESS RINGS

Mehmet Ali Öztürk, Damla Yılmaz, and Hasret Yazarlı

Abstract. In 2019, Öztürk et al. defined gamma semigroups, the first al-

gebraic structure on weak nearness approximation spaces (see [8]). This new

view, which completely changes the nearness of algebraic structures, was first
expressed in an article called nearness d-algebras (see [9]). Afterwards, the

normal nearness subgroups, nearness cosets of the nearness groups and quo-

tient nearness groups were defined (see [13], [14]). In the light of the afore-
mentioned studies, we present this study in which quotient nearness rings are

defined and their properties are examined.

1. Introduction

Set theory is a very important tool for mathematicians and engineers use when
conducting scientific research and studies. Because the real world is uncertain,
imprecise, and absolute, researchers have defined new approaches where ordinary
set theory fails. One of these approaches is rough set theory, on which they base set
theory. The uncertainty that rough set theory deals with involves indistinguishable
elements that have different values in the decision features ( [3], [15]).

Near set theory, which is based on the determination of universal sets according
to the available information of the objects and is a generalization of rough set theory,
was put forward by Peters in 2007. One can see [6], [16], [17], [18], [19] and [20]
for more information on the near set theory.

We may use near set theory to turn elements in algebraic structures into con-
crete elements. Algebraic structures as we know them are not useful for difficult
problems in daily life, because these structures consist of non-empty abstract points.
In near set theory, we use perceptual objects (non-abstract points) that have some
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properties, such as the color of an apple, its degree of ripeness, etc. In algebraic
structures defined on weak nearness approximation spaces, the main tool is upper
approximations of subsets of perceptual objects. Nearness approach is studied with
non-abstract points in algebraic structures and upper approximation of perceptual
objects are taken into account for the nearness of binary operations. This is the
important difference between nearness algebraic structures and classical algebraic
structures. The basic property of classical algebraic structures is as follows: Let G
be a non-empty set. If elements of G has one and only one property then upper
and lower approximation and itself of this set are equal to each other for r = n
(n ∈ Z) . That is, Nr(B)∗G = G = Nr (B)∗ G. In real life, many perceptual objects
have more than one property. For this reason, we think that the nearness algebraic
structure with the property G ⊂

̸=
Nr (B)

∗
G should be examined (see [9]).

In 2012, İnan and Öztürk analyzed the concept of nearness groups and inves-
tigated its basic properties (see [1]). Other algebraic structure studies on nearness
approximation spaces are [2], [4], [5], [7], [10], [11], [12], [14] and [21]. Then, in

2019, Öztürk et. al. defined the first algebraic structure which is gamma semigroup
on weak nearness approximation spaces (see [8]). After this paper, the view of the
nearness of algebraic structures has completely changed. This view was first ex-
pressed a paper called “nearness d-algebras” in 2021 (see [9]). Afterwards, in 2023,

Öztürk defined the normal nearness groups and quotient nearness groups (see [13]).
In classical ring theory, over the years, many methods have been developed

to study rings by dividing rings into smaller parts such as subrings, ideals, and
quotient rings. In classical ring theory, the concept of cosets of a subring or ideal
of a ring is a crucial notion in the study of quotient rings. In this paper, we
have expanded this concept to nearness rings. More precisely, we define quotient
nearness rings using the concept of nearness, which brings a different approach to
algebraic structures, and examine some of their properties.

2. Preliminaries

In this section, topics that will help the main topic of the paper will be given.
Let O be a set of perceptual objects which are points definable by their charac-
teristic. An objects description is defined by means of a tuple of function values
Φ (x) associated with an object x ∈ X ⫋ O. The important thing to notice is the
choice of functions φi ∈ B used to describe any object of interest. Assume that
B ⊆ F is a given set of functions representing features of sample object X ⊂ O. In
combination, the function representing object features provide a basis for an object
description Φ : O → RL, Φ (x) = (φ1 (x) , φ2 (x) , ..., φL (x)) a vector containing
measurements (returned values) associated with each function values φi (x), where
the description length |Φ| = L (see [16]).

Definition 2.1. ( [16]) Let O be a set of perceptual objects, F be a set of the
probe functions, x, x′ ∈ O, and B ⊆ F .

∼Br
= {(x, x′) ∈ O ×O | △φi

=| φi(x)− φi(x
′) |= 0 for all φi ∈ B}

is called the indiscernibility relation on O, where description length 1 ⩽ i ⩽| Φ |.
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Definition 2.2. ( [16]) Let O be a set of perceptual objects, F be a set of the
probe functions, X,X ′ ⊆ O, and B ⊆ F . Then, X is called near X ′ if there exists
x ∈ X,x′ ∈ X ′, φi ∈ B such that x ∼φi x

′.

Definition 2.3. ( [6]) Let O be a set of perceptual objects, Φ be an object
description and A ⊆ O. Then, the set description of A is defined as

Q(A) = {Φ(a) | a ∈ A}.

Definition 2.4. ( [6]) Let O be a set of perceptual objects, A and B be any
two subsets of O. If Q(A) ∩ Q(B) ̸= ∅, then A is called descriptively near B and
denoted by AδΦB.

Definition 2.5. ( [20]) Let O be a set of perceptual objects and A be a subset
of O. Then, the descriptive nearness collection ξΦ(A) is defined by

ξΦ(A) = {B ∈ P(O) |AδΦB}
where P(O) is power set of O.

Definition 2.6. ( [10]) Let O be a set of perceptual objects, F be a set of probe
functions, ∼Br

be indiscernibility relation, and Nr(B) be a collection of partitions.
Then, (O,F ,∼Br

, Nr(B)) is called a weak nearness approximation space.

Theorem 2.1. ( [8]) Let (O,F ,∼Br
, Nr(B)) be a weak nearness approximation

space and X,Y ⊂ O. Then, the following statements hold;
i) Nr (B)∗ X ⊆ X ⊆ Nr (B)

∗
X,

ii) Nr (B)
∗
(X ∪ Y ) = (Nr (B)

∗
X) ∪ (Nr (B)

∗
Y ),

iii) Nr (B)
∗
(X ∩ Y ) ⊆ (Nr (B)

∗
X) ∩ (Nr (B)

∗
Y ,

iv) X ⊆ Y implies Nr (B)
∗
X ⊆ Nr (B)

∗
Y .

Definition 2.7. ( [21]) Let (O,F ,∼Br
, Nr(B)) be a weak nearness approxi-

mation space and G ⊆ O, and “·” be an operation by · : G × G → Nr (B)
∗
G. G

is called a group on O, or shortly, nearness group if the following properties are
satisfied:

NG1) x · y ∈ Nr (B)
∗
G for all x, y ∈ G,

NG2) x · (y · z) = (x · y) · z property holds in Nr (B)
∗
G for all x, y, z ∈ G,

NG3) There exists e ∈ Nr (B)
∗
G such that x · e = x = e · x for all x ∈ G,

NG4) There exists y ∈ G such that x · y = e = y · x for all x ∈ G.

Definition 2.8. ( [21]) Let G be a group on weak nearness approximation
space O and H be a non-empty subset of G. H is called a nearness subgroup of G
if H is a nearness group relative to the operation in G and it is denoted by H ≼ G.

Let G be a nearness group and H be a nearness subgroup of G. Let eH denote
the identity of H and eG denote the identity of G. The identity elements of G and
H are equal to each other, i.e., eH = eG.

Definition 2.9. ( [21]) Let (G, ·) be a nearness group and ∼Brbe an indis-
cernibility relation on G. Then, ∼Br is called a congruence indiscernibility relation
on nearness group G, if x ∼Br

y, where x, y ∈ G implies (x + a) ∼Br
(y + a),

(a+ x) ∼Br
(a+ y), and x · a ∼Br

y · a, and a · x ∼Br
a · y for all a ∈ G.
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Theorem 2.2. ( [21]) Let G be a group on weak nearness approximation space
O and H be a non-empty subset of G. Then, H is a nearness subgroup of G if and
only if

i) x · y ∈ Nr (B)
∗
H for all x, y ∈ H,

ii) x−1 ∈ H for all x ∈ H.

Definition 2.10. ( [21]) Let G be a nearness group such that
Nr (B)

∗
(Nr (B)

∗
G) = Nr (B)

∗
G and H be a non-empty subset of Nr (B)

∗
G. If

the following properties are hold, then H is called upper nearness subgroup of G
and it is denoted by H ⋞ G.

i) x · y ∈ Nr (B)
∗
H for all x, y ∈ H,

ii) x−1 ∈ H for all x ∈ H.

Theorem 2.3. ( [21]) Let G be a nearness group and H be a nearness subgroup
of G such that Nr (B)

∗
(Nr (B)

∗
H) = Nr (B)

∗
H. Then

i) Nr (B)
∗
(HH−1) = Nr (B)

∗
H.

ii) Nr (B)
∗
(HH) = Nr (B)

∗
H.

Definition 2.11. ( [14]) Let G be a nearness group, H be a nearness subgroup
of G, and a, b ∈ G. We say that a is right (resp. left) congruent to b nearness
modulo H, denoted by a ∼=R b (near-modH) (resp. a ∼=L b (near-modH)) if a·b−1 ∈
Nr (B)

∗
H (resp. a−1 · b ∈ Nr (B)

∗
H).

Theorem 2.4. ( [14]) Let G be a nearness group, H be a nearness subgroup
of G such that Nr (B)

∗
(Nr (B)

∗
H) = Nr (B)

∗
H, and a, b ∈ G. If ∼Br is an indis-

cernibility relation on G, then the relation a ∼=R b (near-modH) is an equivalence
relation.

Definition 2.12. ( [14]) Let G be a nearness group and a ∈ G. If H is a
nearness subgroup of G such that Nr (B)

∗
(Nr (B)

∗
H) = Nr (B)

∗
H, then [a]R =

{x ∈ Nr (B)
∗
G | a ∼=R x (near-modH)}. The set [a]R is called a right nearness

equivalence class with respect to (near-mod H) ( or ∼=R) determined by a.

Similarly, the left nearness equivalence class is defined.

Definition 2.13. ( [14]) Let G be a nearness group and a ∈ G. If H is a
nearness subgroup of G, then (Nr (B)

∗
H)a = {ha ∈ Nr (B)

∗
G | h ∈ Nr (B)

∗
H}.

(Nr (B)
∗
H)a is called a right near-coset of H in G.

Similarly, the left near-coset is defined.

Theorem 2.5. ( [14]) Let H be a nearness subgroup of a nearness group G
such that Nr (B)

∗
(Nr (B)

∗
H) = Nr (B)

∗
H, ∼Br

be a congruence indiscernibility
relation on G, and a, b ∈ G. The following properties hold:

i) If (Nr (B)
∗
H)a = (Nr (B)

∗
H)b, then ab−1 ∈ Nr (B)

∗
H,

ii) If a(Nr (B)
∗
H) = b(Nr (B)

∗
H), then a−1b ∈ Nr (B)

∗
H.

Theorem 2.6. ( [14]) Let G be a nearness group such that
Nr (B)

∗
(Nr (B)

∗
G) = Nr (B)

∗
G, H be a nearness subgroup of G such that

Nr (B)
∗
(Nr (B)

∗
H) = Nr (B)

∗
H. If ∼Br

is a congruence indiscernibility relation
on G, and a ∈ G, then (Nr (B)

∗
H)a = {x ∈ Nr (B)

∗
G | a ∼=R x (near-modH)}.
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Definition 2.14. ( [13]) Let G be a nearness group. A nearness subgroup H
of G is called a normal nearness subgroup of G if ((Nr (B)

∗
H)a = a(Nr (B)

∗
H)

for all a ∈ G and it is denoted by H ⊴ G. If H ̸= G, then it is denoted by H ◁ G.

Theorem 2.7. ( [13]) Let G be a nearness group such that
Nr (B)

∗
(Nr (B)

∗
G) = Nr (B)

∗
G, H be a normal nearness subgroup of G such

that Nr (B)
∗
(Nr (B)

∗
H) = Nr (B)

∗
H, and ∼Br

be a congruence indiscernibility
relation on G. If G/H is the set of all (left) near-cosets of H in G, then G/H
is a nearness group under the operation given by a(Nr (B)

∗
H)b(Nr (B)

∗
H) =

ab(Nr (B)
∗
H) for all a, b ∈ G.

Definition 2.15. ( [13]) Let G be a nearness group such that
Nr (B)

∗
(Nr (B)

∗
G) = Nr (B)

∗
G, H be a nearness subgroup of G such that

Nr (B)
∗
(Nr (B)

∗
H) = Nr (B)

∗
H. The nearness group G/H is called the quotient

nearness group or factor nearness group of G by H.

Definition 2.16. ( [10]) Let (O,F ,∼Br
, Nr(B)) be a weak nearness approxi-

mation space and R ⊆ O, and “+” and “·” be operations by + : R×R → Nr (B)
∗
R

and · : R×R → Nr (B)
∗
R, respectively. R is called a ring on O, or shortly, near-

ness ring if the following properties are satisfied:
NR1) (R,+) is an abelian group on O with identity element 0R,
NR2) (R, ·) is a semigroup on O,
NR3) For all x, y, z ∈ R,

x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z

properties hold in Nr (B)
∗
R.

If in addition:
NR4) If x · y = y · x for all x, y ∈ R, then the R is said to be a commutative

nearness ring.
NR5) If Nr (B)

∗
R contains an element 1R such that x · 1R = x = 1R · x for

all x ∈ R, then R is said to be a nearness ring with identity.

Definition 2.17. ( [10]) Let (R,+, ·) be a ring on O, where O is a weak
nearness approximation space, and S be a non-empty subset of R. S is called
subnearness ring of R if S is a nearness ring with binary operations “+” and “·”on
nearness ring R.

Definition 2.18. ( [10]) Let (R,+, ·) be a nearness ring and I be a non-empty
subset of R. I is called a left (right) nearness ideal of R provided x−y ∈ Nr (B)

∗
I,

r · x ∈ Nr (B)
∗
I (x − y ∈ Nr (B)

∗
I, x · r ∈ Nr (B)

∗
I) for all x, y ∈ I and for all

r ∈ R, respectively. A non-empty set I of a nearness ring R is called a nearness
ideal of R if I is both a left and a right nearness ideal of R.

Definition 2.19. ( [10]) Let (R,+, ·) be a nearness ring and ∼Brbe an indis-
cernibility relation on R. Then, ∼Br is called a congruence indiscernibility relation
on nearness ring R, if x ∼Br

y, where x, y ∈ R implies (x + r) ∼Br
(y + r),

(r + x) ∼Br
(r + y), and x · r ∼Br

y · r, and r · x ∼Br
r · y for all r ∈ R.
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Lemma 2.1. ( [10]) Let (R,+, ·) be a nearness ring. If ∼Br
is a congruence

indiscernibility relation on R, then [x]Br
+ [y]Br

⊆ [x + y]Br
, and [x]Br

· [y]Br
⊆

[x · y]Br for all x, y ∈ R.
Let (R,+, ·) be a nearness ring. Let X + Y = {x+ y | x ∈ X, and y ∈ Y } and

X · Y = {
∑

finite

xiyi | xi ∈ X , and yi ∈ Y }, where X and Y are subsets of R.

Lemma 2.2. ( [10]) Let (R,+, ·) be a nearness ring and ∼Br
be a congruence

indiscernibility relation on R. The following properties hold:
i) If X,Y ⊆ R, then (Nr (B)

∗
X) + (Nr (B)

∗
Y ) ⊆ Nr (B)

∗
(X + Y ),

ii) If X,Y ⊆ R, then (Nr (B)
∗
X) · (Nr (B)

∗
Y ) ⊆ Nr (B)

∗
(X · Y ).

Definition 2.20. ( [10]) Let R be a nearness ring and A,B and P be nearness
ideals of R. P is called a prime nearness ideal of R if AB ⊆ Nr (B)

∗
P implies

that either A ⊆ Nr (B)
∗
P or B ⊆ Nr (B)

∗
P .

In the other words, let R be nearness ring and P be nearness ideal of R. P
is called a prime nearness ideal of R if ab ∈ Nr (B)

∗
P implies that either a ∈

Nr (B)
∗
P or b ∈ Nr (B)

∗
P for any a, b ∈ R.

3. Quotient nearness rings

The role played by normal nearness subgroups in the nearness group theory
is played by the nearness ideals in the theory of the nearness rings. Let R be a
nearness ring such that Nr (B)

∗ (
Nr (B)

∗
R
)
= Nr (B)

∗
R, I be a nearness ideal of

R such that Nr (B)
∗ (

Nr (B)
∗
I
)
= Nr (B)

∗
I, and ∼Br

be a congruence indiscerni-
bility relation on R. Then, (R,+) is the commutative nearness group. Since every
nearness subgroup of a commutative nearness group is a normal nearness group,
(I,+) is a normal nearness subgroup of (R,+). Thus the quotient (factor) nearness
group (R/I,⊕) is defined by Theorem 2.7.

Now, we can give the following theorem.

Theorem 3.1. Let R be a nearness ring such that Nr (B)
∗ (

Nr (B)
∗
R
)

=

Nr (B)
∗
R, I be a nearness ideal of R such that Nr (B)

∗ (
Nr (B)

∗
I
)
= Nr (B)

∗
I,

∼Br
be a congruence indiscernibility relation on R and a, b ∈ R. Then,

i)
(
Nr (B)

∗
I
)
+ a =

(
Nr (B)

∗
I
)
+ b if and only if a− b ∈ Nr (B)

∗
I,

ii) a+
(
Nr (B)

∗
I
)
= b+

(
Nr (B)

∗
I
)
if and only if b− a ∈ Nr (B)

∗
I,

iii) “a ∼= b (near-mod I) ⇔ a − b ∈ Nr (B)
∗
I” is a nearness equivalence rela-

tion.

Proof. i) (⇒) The proof is similar to Theorem 2.5.
(⇐) Let a − b ∈ Nr (B)

∗
I. Then [a− b]Br

∩ I ̸= ∅. In this case, there exists x

such that x ∈ [a− b]Br
and x ∈ I. Therefore, x ∼Br

a − b, x ∈ I. Since ∼Br
is a

congruence indiscernibility relation on R and I is a commutative nearness subgroup
of R, we have a ∼Br

x+ b, x ∈ I. On the other hand, y ∈
(
Nr (B)

∗
I
)
+ a implies
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y = z + a, z ∈ Nr (B)
∗
I. Thus, there exists w such that w ∈ [z]Br

and w ∈ I.
Hence, we have z ∼Br

w, w ∈ I. Since ∼Br
is a congruence indiscernibility relation,

we get that z + a ∼Br w + a, w ∈ I. Thus, y ∼Br w + a, w ∈ I =⇒ y − w ∼Br a,
−w ∈ I =⇒ y − w ∼Br x + b; −w, x ∈ I. Therefore, since ∼Br is a conruence
indiscernibility relation and I is a commutative nearness subgroup of R, we obtain
y−b ∼Br

x+w, x+w ∈ Nr (B)
∗
I, and so x+w ∈ [y − b]Br

and x+w ∈ Nr (B)
∗
I,

e.i., [y − b]Br
∩ Nr (B)

∗
I ̸= ∅. Hence, we have y − b ∈ Nr (B)

∗
I, and so there

exists x ∈ Nr (B)
∗
I such that y − b = x, i.e., y = x+ b ∈

(
Nr (B)

∗
I
)
+ b. In this

case, we obtain
(
Nr (B)

∗
I
)
+ a ⊆

(
Nr (B)

∗
I
)
+ b. Similarly,

(
Nr (B)

∗
I
)
+ b ⊆(

Nr (B)
∗
I
)
+ a is obtained.

ii) The proof is similar to (i).
iii) The proof is similar to Theorem 2.4. □

Lemma 3.1. Let R be a nearness ring such that
Nr (B)

∗ (
Nr (B)

∗
R
)
= Nr (B)

∗
R, I be a nearness ideal of R such that

Nr (B)
∗ (

Nr (B)
∗
I
)
= Nr (B)

∗
I, ∼Br be a congruence indiscernibility relation on

R and a, b, c, d ∈ R. If a ∼= b (near-mod I) and c ∼= d (near-mod I), then a+ c ∼=
b+ d (near-mod I) and ac ∼= bd (near-mod I) .

Proof. Let a ∼= b (near-mod I) and c ∼= d (near-mod I) . Thus we get a− b ∈
Nr (B)

∗
I and c − d ∈ Nr (B)

∗
I by Theorem 3.1 (iii). If a − b ∈ Nr (B)

∗
I, then

[a− b]Br
∩ I ̸= ∅, and so there exists n such that n ∈ [a− b]Br

and n ∈ I. Then,

since n ∼Br
a− b, n ∈ I, a ∼ n+ b, n ∈ I. On the other hand, if c− d ∈ Nr (B)

∗
I,

then [c− d]Br
∩ I ̸= ∅. In this case, there exists m such that m ∈ [c− d]Br

,
m ∈ I. Hence m ∼Br c − d, m ∈ I and since ∼Br is a congruence indiscernibility
relation and I is a commutative nearness subgroup of R, we obtain c ∼Br

m + d,
m ∈ I. Therefore, we get (a+ c) − (b+ d) ∼Br

n +m, n +m ∈ Nr (B)
∗
I. Since

n+m ∈ [(a+ c)− (b+ d)] Br
, we get [(a+ c)− (b+ d)] Br

∩Nr (B)
∗
I ̸= ∅. That

is, a + c − (b+ d) ∈ Nr (B)
∗
I. From Theorem 3.1 (iii), we obtain a + c ∼= b + d

(near-mod I).
From ac ∼Br

(n+ b) (m+ d), n,m ∈ I, we have ac ∼Br
bd + nd + bm + nm.

Since I is a nearness ideal of R such that Nr (B)
∗ (

Nr (B)
∗
I
)
= Nr (B)

∗
I, nd +

bm+nm ∈ Nr (B)
∗
I. Thus, ac−bd ∼Br

nd+bm+nm, nd+bm+nm ∈ Nr (B)
∗
I.

Hence, we get [ac− bd] ∩ Nr (B)
∗
I ̸= ∅. That is, ac − bd ∈ Nr (B)

∗
I. From

Theorem 3.1 (iii), we get ac ∼= bd (near-mod I). □

Remark 3.1. Assume that m ∈ Nr (B)
∗
I. We have [m]Br

∩ I ̸= ∅. Let us

take x ∈ [m]Br
, x ∈ I. Thus, m ∼Br

x. Since ∼Br
is a congruence indiscernibility

relation on R, we have −m ∼Br −x, −x ∈ I. Therefore, we have [−m] ∩ I ̸= ∅.
That is, −m ∈ Nr (B)

∗
I.
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Let I be a nearness ideal of the nearness ring R such thatNr (B)
∗ (

Nr (B)
∗
I
)
=

Nr (B)
∗
I and a ∈ Nr (B)

∗
R. In this case,

[a]I =
{
b ∈ Nr (B)

∗
R | a ∼= b (near-mod I)

}
=

{
b ∈ Nr (B)

∗
R | a− b ∈ Nr (B)

∗
I
}

=
{
b ∈ Nr (B)

∗
R | a− b = m, m ∈ Nr (B)

∗
I
}

=
{
b ∈ Nr (B)

∗
R | b = a+ n, −m = n, n ∈ Nr (B)

∗
I
}

= a+Nr (B)
∗
I.

Thus, a + Nr (B)
∗
I =

{
a+ n | n ∈ Nr (B)

∗
I
}
is called the nearness equivalence

class of element a with respect to (near-mod I). Thus, we have

R/I =
{
a+Nr (B)

∗
I | a ∈ R

}
.

Moreover, from Theorem 3.1 and Lemma 3.1, we have the following operations “⊕”
and “⊙” are well-defined.(

a+Nr (B)
∗
I
)
⊕
(
b+Nr (B)

∗
I
)
= (a+ b) +Nr (B)

∗
I(

a+Nr (B)
∗
I
)
⊙

(
b+Nr (B)

∗
I
)
= (ab) +Nr (B)

∗
I

for all a, b ∈ R. It is similar to the proof of Theorem 2.7, (R/I,⊕,⊙) is a nearness
ring. Therefore, we can give the following theorem without proof.

Theorem 3.2. Let R be a nearness ring such that Nr (B)
∗ (

Nr (B)
∗
R
)

=

Nr (B)
∗
R, I be a nearness ideal of R such that Nr (B)

∗ (
Nr (B)

∗
I
)
= Nr (B)

∗
I,

∼Br
be a congruence indiscernibility relation on R. If R/I is the set of all nearness

equivalence classes respect to near-mod I, then R/I is a nearness ring under the
operations given by(

a+Nr (B)
∗
I
)
⊕
(
b+Nr (B)

∗
I
)
= (a+ b) +Nr (B)

∗
I(

a+Nr (B)
∗
I
)
⊙
(
b+Nr (B)

∗
I
)
= (ab) +Nr (B)

∗
I

for all a, b ∈ R.

Definition 3.1. Let R be a nearness ring such that Nr (B)
∗ (

Nr (B)
∗
R
)
=

Nr (B)
∗
R, I be a nearness ideal of R such that Nr (B)

∗ (
Nr (B)

∗
I
)
= Nr (B)

∗
I,

∼Br be a congruence indiscernibility relation on R. The nearness ring R/I is called
the quotient (factor) nearness ring of R by I.

IfR is a nearness ring with identity such thatNr (B)
∗ (

Nr (B)
∗
R
)
= Nr (B)

∗
R,

then the identity element of the quotient nearness ring R/I is [1R] = 1R+Nr (B)
∗
I

and the zero element is [0R] = 0R + Nr (B)
∗
I = Nr (B)

∗
I. Furthermore, if R is

commutative nearness ring, so is R/I.

Definition 3.2. Let O be a set of perceptual objects, I be a nearness ideal of
a nearness ring R, R/I be a set of all nearness equivalence classes respect to near-
mod I, ξΦ (A) be a descriptive nearness collection, and A ∈ P (O), where P (O) is
the power set of O. Then,

Nr (B)
∗
(R/I) = ∪

ξΦ(A)∩R/I ̸=∅
ξΦ(A)
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is called upper approximation of R/I.

example 3.1. Let O = {0, 1, a, b, c, d, e, f, g, h, i, j, k, l,m, n} be set of percep-
tual objects, where

0 =

(
0 0
0 0

)
, 1 =

(
1 0
0 1

)
, a =

(
1 0
0 0

)
, b =

(
0 0
1 0

)
c =

(
0 0
0 1

)
, d =

(
0 1
0 0

)
, e =

(
1 0
1 0

)
, f =

(
0 0
1 1

)
g =

(
0 1
0 1

)
, h =

(
1 1
0 0

)
, i =

(
0 1
1 0

)
, j =

(
1 1
1 0

)
k =

(
1 0
1 1

)
, l =

(
0 1
1 1

)
, m =

(
1 1
0 1

)
, n =

(
1 1
1 1

)
for U = {(aij) : aij ∈ Z2}, B = {Ψ1,Ψ2,Ψ3} ⊆ F be a set of probe functions,
R = {d, k, n} be a subset of O and r = 1. Values of the probe functions

Ψ1 : O → V1 = {β1, β2, β3, β5, β7},
Ψ2 : O → V2 = {β1, β2, β4, β5, β6},
Ψ3 : O → V3 = {β1, β3, β4, β5, β6, β7}

are given in the table:

0 1 a b c d e f g h i j k l m n
Ψ1 β3 β3 β5 β3 β7 β3 β2 β2 β1 β1 β7 β1 β3 β2 β7 β1

Ψ2 β2 β1 β4 β1 β5 β2 β4 β6 β1 β2 β6 β2 β1 β6 β5 β2

Ψ3 β6 β6 β3 β1 β4 β1 β5 β5 β6 β6 β7 β1 β6 β3 β4 β1

In this case, let us find the nearness equivalence classes of O according to the
relationship ∼Br

.

[0]Ψ1
= {x ∈ O | Ψ1(x) = Ψ1(0) = β3} = {0, 1, b, d, k}
= [1]Ψ1

= [b]Ψ1
= [d]Ψ1

= [k]Ψ1
,

[a]Ψ1
= {x ∈ O | Ψ1(x) = Ψ1(a) = β5} = {a},

[c]Ψ1
= {x ∈ O | Ψ1(x) = Ψ1(c) = β7} = {c, i,m}
= [i]Ψ1

= [m]Ψ1
,

[e]Ψ1
= {x ∈ O | Ψ1(x) = Ψ1(e) = β2} = {e, f, l}
= [f ]Ψ1

= [l]Ψ1
,

[g]Ψ1
= {x ∈ O | Ψ1(x) = Ψ1(g) = β1} = {g, h, j, n}
= [h]Ψ1

= [j]Ψ1
= [n]Ψ1

.
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Then we obtain ξΨ1
=

{
[0]Ψ1

, [a]Ψ1
, [c]Ψ1

, [e]Ψ1
, [g]Ψ1

}
.

[0]Ψ2
= {x ∈ O | Ψ2(x) = Ψ2(0) = β2} = {0, d, h, j, n}
= [d]Ψ2

= [h]Ψ2
= [j]Ψ2

= [n]Ψ2
,

[1]Ψ2
= {x ∈ O | Ψ2(x) = Ψ2(1) = β1} = {1, b, g, k}
= [b]Ψ2

= [g]Ψ2
= [k]Ψ2

,

[a]Ψ2
= {x ∈ O | Ψ2(x) = Ψ2(a) = β4} = {a, e}
= [e]Ψ2

,

[c]Ψ2
= {x ∈ O | Ψ2(x) = Ψ2(c) = β5} = {c,m}
= [m]Ψ2

,

[f ]Ψ2
= {x ∈ O | Ψ2(x) = Ψ2(f) = β6} = {f, i, l}
= [i]Ψ2

= [l]Ψ2
,

Thus we get ξΨ2 =
{
[0]Ψ2

, [1]Ψ2
, [a]Ψ2

, [c]Ψ2
, [f ]Ψ2

}
. Also, we can write

[0]Ψ3
= {x ∈ O | Ψ3(x) = Ψ3(0) = β6} = {0, 1, g, h, k}
= [1]Ψ3

= [g]Ψ3
= [h]Ψ3

= [k]Ψ3
,

[a]Ψ3
= {x ∈ O | Ψ3(x) = Ψ3(a) = β3} = {a, l}
= [l]Ψ3

,

[b]Ψ3
= {x ∈ O | Ψ3(x) = Ψ3(b) = β1} = {b, d, j, n}
= [d]Ψ3

= [j]Ψ3
= [n]Ψ3

,

[c]Ψ3
= {x ∈ O | Ψ3(x) = Ψ3(c) = β4} = {c,m}
= [m]Ψ3

,

[e]Ψ3
= {x ∈ O | Ψ3(x) = Ψ3(e) = β5} = {e, f}
= [f ]Ψ3

,

[i]Ψ3
= {x ∈ O | Ψ3(x) = Ψ3(i) = β7} = {i}.

Thus, we get ξΨ3
=

{
[0]Ψ3

, [a]Ψ3
, [b]Ψ3

, [c]Ψ3
, [e]Ψ3

, [i]Ψ3

}
. Hence, for r = 1, a set

of partitions of O is N1 (B) = {ξΨ1
, ξΨ2

, ξΨ3
}.

N1 (B)
∗
R =

⋃
[x]Ψi

[x]Ψi
∩ R ̸=∅

= {0, 1, b, d, g, h, j, k, n}.
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Considering the following table of operation:

+ d k n
d 0 n k
k n 0 d
n k d 0

Thus, (R,+) is a commutative nearness group. Now, let the following table of
operation

· d k n
d 0 h h
k g 1 h
n g g 0

In this case, (R,+, ·) is a nearness ring such that N1 (B)
∗ (

N1 (B)
∗
R
)
= N1 (B)

∗
R.

Let I = {k, n} be a subset of R. Thus, I is a nearness ideal of R such that
N1 (B)

∗ (
N1 (B)

∗
I
)
= N1 (B)

∗
I = {0, 1, b, d, k, j, g, h, n}. From Definition 2.13,

we have [x]I =
(
N1 (B)

∗
I
)
+ x = {y + x ∈ N1 (B)

∗
R | y ∈ N1 (B)

∗
I}. We can

compute the all nearness equivalence classes (respect to near-mod I) of R by I, and
so we get [d]I = [n]I = {0, d, k, n} and [k]I = {0, 1, b, d, g, j, k, n}. Thus, we have
R/I = {[d]I , [k]I} . Moreover, although 0R /∈ R, [0]I = N1 (B)

∗
I. Now, let’s get

the set of N1 (B)
∗
(R/I) .

Q (R/I) = {Φ (A) | A ∈ R/I}
= {Φ ([d]I) ,Φ ([k]I)}
= {{Φ (0) ,Φ (d) ,Φ (k) ,Φ (n)} ,

{Φ (0) ,Φ (1) ,Φ (b) ,Φ (d) ,Φ (g) ,Φ (j) ,Φ (k) ,Φ (n)}},
= {{(β3, β2, β6) , (β3, β2, β1) , (β3, β1, β6) , (β1, β2, β1)} ,

{(β3, β2, β6) , (β3, β1, β6) , (β3, β1, β1) , (β3, β2, β1) , (β1, β1, β6) ,

(β1, β2, β1) , (β3, β1, β6) , (β1, β2, β1)}}.

For [k]I ∈ R/I, we get that

Q ([k]I) = {Φ (0) ,Φ (1) ,Φ (b) ,Φ (d) ,Φ (g) ,Φ (j) ,Φ (k) ,Φ (n)}
= (β3, β2, β6) , (β3, β1, β6) , (β3, β1, β1) , (β3, β2, β1) , (β1, β1, β6) ,

(β1, β2, β1) , (β3, β1, β6) , (β1, β2, β1)} .

Since Q ([k]I) ∩ Q ([k]I) ̸= ∅, it follows that [k]I ∈ ξΦ ([k]I). Therefore, Q ([k]I) ∩
R/I ̸= ∅ and [k]I ∈ N1 (B)

∗
(R/I) by Definition 3.2.

For [d]I , [n]I ∈ R/I, we get that [d]I = [n]I = {k, d, n, 0}. Thus, we have

Q ([d]I) = {Φ (0) ,Φ (d) ,Φ (k) ,Φ (n)}
= {(β3, β2, β6) , (β3, β2, β1) , (β3, β1, β6) , (β1, β2, β1)}
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Since Q ([d]I) ∩ Q ([d]I) ̸= ∅, it follows that [d]I ∈ ξΦ ([d]I). Therefore, Q ([d]I) ∩
R/I ̸= ∅ and [d]I ∈ N1 (B)

∗
(R/I) by Definition 3.2. If we calculate the other

nearness equivalence classes (respect to near-mod I) of R by I, then we get
N1 (B)

∗
(R/I) = {[0]I , [1]I , [b]I , [d]I , [g]I , [h]I , [j]I , [k]I} by Definition 3.2.

Considering the following the tables of operations

⊕ [d]I [k]I
[d]I [0]I [d]I
[k]I [d]I [0]I

⊙ [d]I [k]I
[d]I [0]I [h]I
[k]I [g]I [1]I

Then, (R/I,⊕,⊙) is a nearness ring, i.e., R/I is a quotient (factor) nearness
ring of R by I.

Lemma 3.2. Let R be a nearness ring with identity such that
Nr (B)

∗ (
Nr (B)

∗
R
)
= Nr (B)

∗
R, I be a nearness ideal of R such that

Nr (B)
∗ (

Nr (B)
∗
I
)
= Nr (B)

∗
I, ∼Br

be a congruence indiscernibility relation on

R. If 1R ∈ Nr (B)
∗
I, then Nr (B)

∗
I = Nr (B)

∗
R.

Proof. Since I is a nearness ideal of R, we have I ⊆ R, and so Nr (B)
∗
I ⊆

Nr (B)
∗
R by Theorem 2.1.

Now, let x ∈ Nr (B)
∗
R. Then, [x]I ∩ R ̸= ∅. Let us take r ∈ R and r ∈ [x]I .

On the other words, if 1R ∈ Nr (B)
∗
I, then [1R]I ∩ I ̸= ∅. Assume that a ∈ [1R]

and a ∈ I. Since I is a nearness ideal of R, we get ar ∈ Nr (B)
∗
I and also,

from hypothesis, ar ∈ [1R]I [x]I ⊆ [1Rx]I = [x]I by Lemma 2.1. Hence we obtain

[x]I ∩ Nr (B)
∗
I ̸= ∅. Thus, x ∈ Nr (B)

∗ (
Nr (B)

∗
I
)
= Nr (B)

∗
I. Therefore,

Nr (B)
∗
R ⊆ Nr (B)

∗
I. □

Definition 3.3. Let R ̸= {0R} be a nearness ring. R is called a nearness
integral domain if the commutative nearness ring with identity, where x ̸= 0R and
y ̸= 0R imply xy ̸= 0R for all x, y ∈ R.

On the other words, the nearness integral domain may also be defined as follows:
A zero divisor of a commutative nearness ring R is an element x ̸= 0R of R such
that xy = 0R for some 0R ̸= y ∈ R. A commutative nearness ring R ̸= {0R} is
integral domain if and only if R has no zero divisor.

Theorem 3.3. Let R ̸= {0R} be a commutative nearness ring such that
Nr (B)

∗ (
Nr (B)

∗
R
)
= Nr (B)

∗
R, P be a nearness ideal of R such that

Nr (B)
∗ (

Nr (B)
∗
P
)
= Nr (B)

∗
P , ∼Br

be a congruence indiscernibility relation
on R. Then, P is a prime nearness ideal if and only if R/I is a nearness integral
domain.

Proof. Suppose that P is prime nearness ideal of R. Since P is nearness
ideal, R/P is a nearness ring by Theorem 3.2. Also, since R is a commutative, R/P
is commutative. Therefore, we must show that [x]P = [0]P or [y]P = [0]P when
[x]P [y]P = [0]P for some [x]P , [y]P ∈ R/P . Let [x]P = x+Nr (B)

∗
P and [y]P = y+
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Nr (B)
∗
P , x, y ∈ R. If [x]P [y]P = [0]P , then

(
x+Nr (B)

∗
P
) (

y +Nr (B)
∗
P
)
=

Nr (B)
∗
P . From here, since xy+Nr (B)

∗
P = Nr (B)

∗
P , we have xy ∈ Nr (B)

∗
P .

By hypothesis, x ∈ Nr (B)
∗
P or y ∈ Nr (B)

∗
P . That is, [x]P = [0]P or [y]P = [0]P .

Conversely, let R/P be a nearness integral domain. Then, P ̸= R is a nearness
ideal of R. Now, let xy ∈ Nr (B)

∗
P for x, y ∈ R. Hence, from Theorem 3.1, we

have xy + Nr (B)
∗
P = Nr (B)

∗
P . From this, we get that [x]P [y]P = [0]P for

some [x]P , [y]P ∈ R/P . Since R/P is commutative integral domain, [x]P = [0]P or
[y]P = [0]P . That is, x + Nr (B)

∗
P = Nr (B)

∗
P or y + Nr (B)

∗
P = Nr (B)

∗
P .

Thus, we get x ∈ Nr (B)
∗
P or y ∈ Nr (B)

∗
P by Theorem 3.1. Thus, P is a prime

nearness ideal. □
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