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SOME COMMON FIXED-POINT AND FIXED-CIRCLE
RESULTS IN SYMMETRIC S-MULTIPLICATIVE

METRIC SPACE

Rakesh Tiwari, Rajesh Patel, Elif Kaplan, and Sharma Nidhi

Abstract. In this paper, we introduce a new metric space, called symmetric

S-multiplicative metric space, and establish a common fixed point theorem for
four self-mappings with a family of functions in this space. We also investigate

some geometric interpretations of fixed point theorems on the circle and disc.

1. Introduction and preliminaries

The Banach contraction principle was first stated explicitly in 1922 [23]. The
term fixed point theory referred on those fixed points theoretic results in which
geometric conditions on the underlying spaces and for mappings play a crucial
role. For the past several years metric fixed point theory has been flourishing area
for many mathematicians. Since then, topology, functional analysis and nonlinear
analysis had been reliant on metric space. This space’s topological nature with
applications in fixed-point theory has attracted the interest of numerous mathe-
maticians(see [1], [9] - [19]).

In 1906, Frechet [10] introduced metric spaces. Numerous generalisations of the
concept of metric space have been constructed and different fixed point theorems
have been proved in recent years. In 2008, Bashirov et al. [1] developed a different
type of metric spaces which is known as multiplicative metric spaces and they
also established the corresponding Banach fixed point result in the same spaces.
In 2012, Sedghi et al. [21] established a fixed point theorem for a self-mapping
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on a complete S-metric spaces. In 2019, Mustafa et al. [25] generalized S-metric
spaces into Sp-metric spaces and investigated the existence of a fixed point for such
mappings under various contractive conditions. Most recently in 2024, Adewale
et al. [17] stated and proved some fixed-point theorems in S-multiplicative metric
spaces, which shows that some fixed point theorems are equivalent to those of
corresponding fixed-point results in S-metric spaces.
We first present some important definitions and notations which will be used in the
main results as follows:

Definition 1.1. [10] Let Y be a non-empty set. A mapping d : Y × Y →
[0,+∞) is said to be metric on Y , if and only if for all µ, τ, ρ ∈ Y , it satisfies the
following conditions:

(1) d(µ, τ) ⩾ 0,
(2) d(µ, τ) = 0 if and only if µ = τ,
(3) d(µ, τ) = d(τ, µ),
(4) d(µ, τ) ⩽ d(µ, ρ) + d(ρ, τ).

The pair (Y, d) is called a (standard) metric space.

Definition 1.2. [21] Let Y be a non-empty set. A mapping S : Y ×Y ×Y →
[0,+∞) is said to be S-metric on Y , if and only if for all µ, τ, ρ, a ∈ Y , it satisfies
the following conditions:

(1) S(µ, τ, ρ) = 0 if and only if µ = τ = ρ,
(2) S(µ, τ, ρ) ⩽ S(µ, µ, a) + S(τ, τ, a) + S(ρ, ρ, a).

The pair (Y, S) is called a S-metric space.

example 1.1. [22] Let Y = R. The function S : Y ×Y ×Y → [0,+∞) defined
as

S(µ, τ, ρ) = |µ− ρ|+ |τ − ρ|
for each µ, τ, ρ ∈ Y is an S-metric on Y . This S-metric is called a usual S-metric.

The relation between a metric d and S-metric defined on a set Y is given in
the following lemma.

Lemma 1.1. [13] Let (Y, d) be a metric space. The function Sd : Y ×Y ×Y →
[0,+∞) defined as Sd (µ, τ, ρ) = d (µ, ρ)+d (τ, ρ) for each µ, τ, ρ ∈ Y is an S-metric
on the set Y . The metric Sd is called the S-metric generated by the metric d.

Note that there exists an S-metric S satisfying S ̸= Sd for all metrics d.

example 1.2. [15] Let Y = R and define the function

S (µ, τ, ρ) = |µ− ρ|+ |µ+ ρ− 2τ |
for all µ, τ, ρ ∈ Y. Then, (Y, S) is an S-metric space. There does not exist any
metric d such that S = Sd.

Definition 1.3. [1] Let Y be a non-empty set. A mapping d∗ : Y × Y →
[0,+∞) is said to be multiplicative metric on Y if and only if for all µ, τ, ρ ∈ Y , it
satisfies the following conditions:
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(1) d∗(µ, τ) ⩾ 1,
(2) d∗(µ, τ) = 1 if and only if µ = τ,
(3) d∗(µ, τ) = d∗(τ, µ),
(4) d∗(µ, τ) ⩽ d∗(µ, ρ).d∗(ρ, τ).

The pair (Y, d∗) is called a multiplicative metric space.

Remark 1.1. [18] If the logarithm of condition 4. of Definition (1.3) is taken,
the multiplicative metric space is equivalent to the (standard) metric space. Indeed,
this situation is easy to see. Since the logarithm function is a non-decreasing, we
obtain

d (µ, τ) = ln (d∗(µ, τ))

⩽ ln (d∗(µ, ρ).d∗(ρ, τ))

= ln (d∗(µ, ρ)) + ln (d∗(ρ, τ))

= d(µ, ρ) + d(ρ, τ).

Definition 1.4. [17] Let Y be a non-empty set. A mapping S∗ : Y ×Y ×Y →
[0,+∞) is said to be S-multiplicative metric on Y , if and only if for all µ, τ, ρ, a ∈ Y ,
it satisfies the following conditions:

(1) S∗(µ, τ, ρ) = 1 if and only if µ = τ = ρ,
(2) S∗(µ, τ, ρ) ⩽ S∗(µ, µ, a)× S∗(τ, τ, a)× S∗(ρ, ρ, a).

The pair (Y, S∗) is called an S-multiplicative metric space.

Remark 1.2. If we take the logarithm function to condition 2. of the Definition
(1.4), we obtain the S-metric space. It can be seen as follows:

S(µ, τ, ρ) = ln (S∗(µ, τ, ρ))

⩽ ln (S∗(µ, µ, a)× S∗(τ, τ, a)× S∗(ρ, ρ, a))

= ln (S∗(µ, µ, a)) + ln (S∗(τ, τ, a)) + ln (S∗(ρ, ρ, a))

= S(µ, µ, a) + S(τ, τ, a) + S(ρ, ρ, a).

Definition 1.5. [17] Let (Y, S) be an S-multiplicative metric space. For
µ ∈ Y, r > 0, the S-sphere with center µ and radius r is S(µ, r) = {τ ∈ Y :
S(µ, τ, τ) < r}.

Definition 1.6. [17] Let (Y, S) and (Y
′
, S

′
) be two S-multiplicative metric

spaces, a function T : Y → Y
′
is S-continuous at a point µ ∈ Y if

T−1(SS′ (T (µ), r)) ∈ τ(S),

for all r > 1. T is S-continuous if it is S-continuous at all points of Y .

Definition 1.7. [17] Let (Y, S) be an S-multiplicative metric space and {µn}
a sequence in Y . Then {µn} converges to µ if and only if S(µn, µ, µ) → 1 as
n → ∞.

Definition 1.8. [17] Let (Y, S) be an S-multiplicative metric space and {µn}
a sequence in Y . Then {µn} is said to be a Cauchy sequence if and only if
S(µn, µm, µl) → 1 as n,m, l → ∞.
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In this paper, we introduce symmetric S-multiplicative metric space and es-
tablish common fixed point theorem in this space and an example is also furnished
to validate our results.

2. Main results

Definition 2.1. Let (Y, S) be an S-multiplicative metric space. An S-multiplicative
metric space is called symmetric if S(µ, µ, τ) = S(τ, τ, µ) for all µ, τ ∈ Y .

example 2.1. Let Y = R+ and define S : Y × Y × Y → [0,+∞) by

S(µ, τ, ρ) = |cos(ρ(µ− τ))|.
Here S(µ, τ, ρ) ⩽ S(µ, µ, a) × S(τ, τ, a) × S(ρ, ρ, a) and S(µ, µ, τ) = S(τ, τ, µ),
∀µ, τ, ρ, a ∈ Y . Clearly, the pair (Y, S) is a symmetric S-multiplicative metric
space but it is not an S-metric space.

example 2.2. Let Y = R+ and define S : Y × Y × Y → [0,+∞) by

S(µ, τ, ρ) =

{
1, µ = τ = ρ

ecos(ρ(µ−τ)), otherwise.

Then, (Y, S) is a symmetric S-multiplicative metric space but it is not an S-metric
space.

To obtain a new common fixed-point theorem, we are inspired by the function
family 𭟋6 introduced in [20]. We modify these families as follows:
Let Φ be the family of all lower semi-continuous functions ϕ : R+

6 → R that satisfy
the following condition:
(ϕ∗). For all µ, τ, ρ ⩾ 0, there exists a r ∈ [0, 1) such that µ ⩽ ϕ(µ, τ, τ, µ, 1, ρ)
with ρ ⩽ µ2τ , then µ ⩽ τ r.

example 2.3. Define the function ϕ : R+
6 → R such that

ϕ(t1, t2, t3, t4, t5, t6) = [max{t1, t2}]r,
with r ∈ [0, 1). Then obviously ϕ ∈ Φ.

Now, we present the following result.

Theorem 2.1. Let (Y, S) be a complete continuous symmetric S-multiplicative
metric space. Let f, g, F,G : Y → Y are four continuous mappings satisfying the
following conditions.

(1) f(Y ) ⊂ G(Y ) and g(Y ) ⊂ F (Y ),
(2) For all µ, τ ∈ Y and ϕ ∈ Φ,

S(fµ, fµ, gτ) ⩽ ϕ

(
S(fµ, fµ, gτ), S(µ, µ, τ), S(µ, µ, fµ),
S(τ, τ, gτ), S(τ, τ, fµ), S(µ, µ, gτ)

)
,

(3) For all µ, τ ∈ Y and ϕ ∈ Φ,

S(Fµ, Fµ,Gτ) ⩽ ϕ

(
S(Fµ, Fµ,Gτ), S(µ, µ, τ), S(µ, µ, Fµ),
S(τ, τ,Gτ), S(τ, τ, Fµ), S(µ, µ,Gτ)

)
,
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then f, g, F and G have a common fixed point in Y .

Proof. Let ρ0 ∈ Y, ρ1 = fρ0 and ρ2 = gρ1. Using the condition 2, we get

S(fρ0, fρ0, gρ1) = S(ρ1, ρ1, ρ2)

⩽ ϕ

(
S(fρ0, fρ0, gρ1), S(ρ0, ρ0, ρ1), S(ρ0, ρ0, fρ0),
S(ρ1, ρ1, gρ1), S(ρ1, ρ1, fρ0), S(ρ0, ρ0, gρ1)

)
= ϕ

(
S(ρ1, ρ1, ρ2), S(ρ0, ρ0, ρ1), S(ρ0, ρ0, ρ1),
S(ρ1, ρ1, ρ2), S(ρ1, ρ1, ρ1), S(ρ0, ρ0, ρ2)

)
= ϕ

(
S(ρ1, ρ1, ρ2), S(ρ0, ρ0, ρ1), S(ρ0, ρ0, ρ1),
S(ρ1, ρ1, ρ2), 1, S(ρ0, ρ0, ρ2)

)
.(2.1)

By using condition 2 of Definition 1.4 and the symmetry, we have

S(ρ0, ρ0, ρ2) = S(ρ2, ρ2, ρ0)

⩽ (S(ρ2, ρ2, ρ1))
2S(ρ0, ρ0, ρ1)

= (S(ρ1, ρ1, ρ2))
2S(ρ0, ρ0, ρ1).(2.2)

Using (2.1), (2.2) and (ϕ∗), there exists a r ∈ [0, 1) such that

S(ρ1, ρ1, ρ2) ⩽ (S(ρ0, ρ0, ρ1))
r.

Continuing this process with the condition 1, we can define the sequence ρn as
follows:

ρ2n+1 = fρ2n = Gρ2n and ρ2n = gρ2n−1 = Fρ2n−1.

Using condition 2, for µ = ρ2n and τ = ρ2n+1, we have

S(fρ2n, fρ2n, gρ2n+1) = S(ρ2n+1, ρ2n+1, ρ2n+2)

⩽ ϕ

 S(fρ2n, fρ2n, gρ2n+1), S(ρ2n, ρ2n, ρ2n+1),
S(ρ2n, ρ2n, fρ2n), S(ρ2n+1, ρ2n+1, gρ2n+1),
S(ρ2n+1, ρ2n+1, fρ2n), S(ρ2n, ρ2n, gρ2n+1)


= ϕ

 S(ρ2n+1, ρ2n+1, ρ2n+2), S(ρ2n, ρ2n, ρ2n+1),
S(ρ2n, ρ2n, ρ2n+1), S(ρ2n+1, ρ2n+1, ρ2n+2),
S(ρ2n+1, ρ2n+1, ρ2n+1), S(ρ2n, ρ2n, ρ2n+2)


= ϕ

 S(ρ2n+1, ρ2n+1, ρ2n+2), S(ρ2n, ρ2n, ρ2n+1),
S(ρ2n, ρ2n, ρ2n+1), S(ρ2n+1, ρ2n+1, ρ2n+2),
1, S(ρ2n, ρ2n, ρ2n+2).

 .(2.3)

By using condition 2 of Definition 1.4 and the symmetry, we have

S(ρ2n, ρ2n, ρ2n+2) = S(ρ2n+2, ρ2n+2, ρ2n)

⩽ (S(ρ2n+2, ρ2n+2, ρ2n+1))
2S(ρ2n, ρ2n, ρ2n+1)

= (S(ρ2n+1, ρ2n+1, ρ2n+2))
2S(ρ2n, ρ2n, ρ2n+1).(2.4)

Using (2.3), (2.4) and (ϕ∗), there exists a r ∈ [0, 1) such that

(2.5) S(ρ2n+1, ρ2n+1, ρ2n+2) ⩽ (S(ρ2n, ρ2n, ρ2n+1))
r.
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Using condition 2, for µ = ρ2n−1 and τ = ρ2n, we have

S(Fρ2n−1, Fρ2n−1, Gρ2n) = S(ρ2n, ρ2n, ρ2n+1)

⩽ ϕ

 S(Fρ2n−1, Fρ2n−1, Gρ2n), S(ρ2n−1, ρ2n−1, ρ2n),
S(ρ2n−1, ρ2n−1, Fρ2n−1), S(ρ2n, ρ2n, Gρ2n),
S(ρ2n, ρ2n, Fρ2n−1), S(ρ2n−1, ρ2n−1, Gρ2n)


= ϕ

 S(ρ2n, ρ2n, ρ2n+1), S(ρ2n−1, ρ2n−1, ρ2n),
S(ρ2n−1, ρ2n−1, ρ2n), S(ρ2n, ρ2n, ρ2n+1),
S(ρ2n, ρ2n, ρ2n), S(ρ2n−1, ρ2n−1, ρ2n+1)


= ϕ

 S(ρ2n, ρ2n, ρ2n+1), S(ρ2n−1, ρ2n−1, ρ2n),
S(ρ2n−1, ρ2n−1, ρ2n), S(ρ2n, ρ2n, ρ2n+1),
1, S(ρ2n−1, ρ2n−1, ρ2n+1)

 .(2.6)

By using condition 2 of Definition 1.4 and the symmetry, we have

S(ρ2n−1, ρ2n−1, ρ2n+1) = S(ρ2n+1, ρ2n+1, ρ2n−1)

⩽ (S(ρ2n+1, ρ2n+1, ρ2n))
2S(ρ2n−1, ρ2n−1, ρ2n)

= (S(ρ2n, ρ2n, ρ2n+1))
2S(ρ2n−1, ρ2n−1, ρ2n).(2.7)

Using (2.6), (2.7) and (ϕ∗), there exists a r ∈ [0, 1) such that

(2.8) S(ρ2n, ρ2n, ρ2n+1) ⩽ (S(ρ2n−1, ρ2n−1, ρ2n))
r.

Using (2.5) and (2.8), we get

S(ρ2n+1, ρ2n+1, ρ2n+2) ⩽ (S(ρ2n, ρ2n, ρ2n+1))
r ⩽ (S(ρ2n−1, ρ2n−1, ρ2n))

r2 .

Continuing this process, we obtain

(2.9) S(ρn, ρn, ρn+1) ⩽ (S(ρ0, ρ0, ρ1))
rn .

By using condition 2 of Definition 1.4, we have

S(ρn, ρm, ρm) ⩽ S(ρn, ρn, ρn+1)(S(ρm, ρm, ρn+1))
2.

Continuing this process with m > n, we obtain

S(ρn, ρm, ρm) ⩽ S(ρn, ρn, ρn+1)× (S(ρn+1, ρn+1, ρn+2))
2

× (S(ρn+2, ρn+2, ρn+3))
4 × ...× (S(ρm−1, ρm−1, ρm))2n].(2.10)

From (2.9) and (2.10), we have

S(ρn, ρm, ρm) ⩽ (S(ρ0, ρ0, ρ1))
rn × (S(ρ0, ρ0, ρ1))

r2n

× (S(ρ0, ρ0, ρ1))
r4n × ...× (S(ρ0, ρ0, ρ1))

r2n
2

].

Taking the limit of S(ρn, ρm, ρm) as n,m → ∞, we have

lim
n→∞

S(ρn, ρm, ρm) = 1.

For n,m, l ∈ N with n > m > l,

S(ρn, ρm, ρl) ⩽ S(ρn, ρn, ρn−1)× S(ρm, ρm, ρn−1)× S(ρl, ρl, ρn−1)].



SOME RESULTS IN SYMMETRIC S-MULTIPLICATIVE METRIC SPACES 319

Taking the limit of S(ρn, ρm, ρl) as n,m, l → ∞, we have

lim
n,m,l→∞

S(ρn, ρm, ρl) = 1.

Hence {ρn} is a Cauchy sequence. By the completeness of (Y, S), there exists ρ ∈ Y
such that {ρn} is S-convergent to ρ, that is, limn→∞ S(ρn, ρn, ρ) = 1.
Next, we establish that ρ is a common fixed point of f, g, F and G. Using the
condition (2) of Definition 1.4, for µ = ρ2n and τ = ρ, we have

S(fρ2n, fρ2n, gρ) = S(ρ2n+1, ρ2n+1, gρ)

⩽ ϕ

(
S(fρ2n, fρ2n, gρ), S(ρ2n, ρ2n, ρ), S(ρ2n, ρ2n, fρ2n),
S(ρ, ρ, gρ), S(ρ, ρ, fρ2n), S(ρ2n, ρ2n, gρ)

)
= ϕ

(
S(ρ2n+1, ρ2n+1, gρ), S(ρ2n, ρ2n, ρ), S(ρ2n, ρ2n, ρ2n+1),
S(ρ, ρ, gρ), S(ρ, ρ, ρ2n+1), S(ρ2n, ρ2n, gρ)

)
and taking n → ∞, we get

S(ρ, ρ, gρ) ⩽ ϕ

(
S(ρ, ρ, gρ), S(ρ, ρ, ρ), S(ρ, ρ, ρ),
S(ρ, ρ, gρ), S(ρ, ρ, ρ), S(ρ, ρ, gρ)

)
= ϕ

(
S(ρ, ρ, gρ), 1, 1, S(ρ, ρ, gρ), 1, S(ρ, ρ, gρ)

)
.(2.11)

Therefore

(2.12) S(ρ, ρ, gρ) ⩽ (S(ρ, ρ, gρ))2.1 = (S(ρ, ρ, gρ))2.

Using (2.11), (2.12) and (ϕ∗), there exists a r ∈ [0, 1) such that

S(ρ, ρ, gρ) ⩽ 1r = 1,

that is, gρ = ρ. Using the continuity hypothesis of f , we have

lim
n→∞

S(ρ2n, ρ2n, ρ) = 1

⇒ lim
n→∞

S(fρ2n, fρ2n, fρ) = 1

⇒ lim
n→∞

S(ρ2n+1, ρ2n+1, fρ) = 1

⇒ S(ρ, ρ, fρ) = 1

⇒ fρ = ρ.

Hence ρ is a common fixed point f and g. Using condition 3, for µ = ρ2n and
τ = ρ, we have

S(Fρ2n, Fρ2n, Gρ) = S(ρ2n+1, ρ2n+1, ρ)

⩽ ϕ

(
S(Fρ2n, Fρ2n, Gρ), S(ρ2n, ρ2n, ρ), S(ρ2n, ρ2n, Fρ2n),
S(ρ, ρ,Gρ), S(ρ, ρ, Fρ2n), S(ρ2n, ρ2n, Gρ)

)
= ϕ

(
S(ρ2n+1, ρ2n+1, Gρ), S(ρ2n, ρ2n, ρ), S(ρ2n, ρ2n, ρ2n+1),
S(ρ, ρ,Gρ), S(ρ, ρ, ρ2n+1), S(ρ2n, ρ2n, Gρ)

)
,
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and taking n → ∞, we get

S(ρ, ρ,Gρ) ⩽ ϕ

(
S(ρ, ρ,Gρ), S(ρ, ρ, ρ), S(ρ, ρ, ρ),
S(ρ, ρ,Gρ), S(ρ, ρ, ρ), S(ρ, ρ,Gρ)

)
= ϕ

(
S(ρ, ρ,Gρ), 1, 1, S(ρ, ρ,Gρ), 1, S(ρ, ρ,Gρ)

)
.(2.13)

Therefore

(2.14) S(ρ, ρ,Gρ) ⩽ (S(ρ, ρ,Gρ))2.1 = (S(ρ, ρ,Gρ))2.

Using (2.13), (2.14) and (ϕ∗), there exists a r ∈ [0, 1) such that

S(ρ, ρ,Gρ) ⩽ 1r = 1,

that is, Gρ = ρ. Using the continuity hypothesis of F , we have

lim
n→∞

S(ρ2n, ρ2n, ρ) = 1

⇒ lim
n→∞

S(Fρ2n, Fρ2n, Fρ) = 1

⇒ lim
n→∞

S(ρ2n+1, ρ2n+1, Fρ) = 1

⇒ S(ρ, ρ, Fρ) = 1

⇒ Fρ = ρ.

Consequently, we get

ρ = fρ = gρ = Fρ = Gρ.

Thus ρ is a common fixed point of self-mappings f , g, F and G.
□

3. Some fixed-circle and fixed-disc results

Ozgur and Tas [16] introduced a study of the theory of fixed circles in metric
spaces, establishing the existence and uniqueness criteria of fixed circles for self-
mappings. Later, the theory of fixed circles has been extended to some generalized
metric spaces with different geometric approximations ( [6], [14], [7], [11], [12], [4]
). Motivated by the application of fixed circle theorems and the ongoing work on
various generalised metric spaces, we think it is very interesting to introduce the
notion of ’fixed circle’ and ’fixed disc’ in symmetric S-multiplicative metric spaces.

We will first introduce the idea of a fixed circle and a fixed disc in symmetric
S-multiplicative metric spaces and then we will study the fixed circle theorems.

Definition 3.1. Let (Y, S) be a S-multiplicative metric space and ρ0, ρ1, ρ2 ∈
Y, r1 ∈ [1,∞).

• The circle is defined by

CS
ρ1,r1 = {µ ∈ Y : S(µ, µ, ρ1) = r1}.

• The disc is defined by

DS
ρ1,r1 = {µ ∈ Y : S(µ, µ, ρ1) ⩽ r1}.
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Definition 3.2. Let f : Y → Y be a self-mapping where (Y, S) is a symmetric
S-multiplicative metric space and let Fix(f) be set of all fixed points of f , then a
geometric figure F (circle or disc) is said to be a fixed figure of f if F is contained
in Fix(f).

Theorem 3.1. Let (Y, S) be a symmetric S-multiplicative metric space, f :
Y → Y be a mapping and r1 = inf{S(µ, µ, fµ) : µ ̸∈ Fix(f)}. If there exist ρ1 ∈ Y
and ϕ ∈ Φ for all µ ∈ Y − {ρ1} such that µ ̸∈ Fix(f) implies

(3.1) S(fµ, fµ, µ) ⩽ ϕ

 S(fµ, fµ, µ), S(µ, µ, ρ1),
S(µ, µ, fρ1), S(fµ, fµ, µ),
S(fρ1, fρ1, ρ1), S(fµ, fµ, ρ1)

 ,

and fρ1 = ρ1 with fµ ∈ DS
ρ1,r1 then DS

ρ1,r1 ⊂ Fix(f). Especially, we have CS
ρ1,r1 ⊂

Fix(f).

Proof. Let r1 = 1. Then we have DS
ρ1,r1 = {ρ1}. By the hypothesis fρ1 = ρ1,

we obtain

DS
ρ1,r1 ⊂ Fix(f).

Let r1 > 1 and µ ∈ DS
ρ1,r1 such that µ ̸∈ Fix(f). Using (3.1), we have

S(fµ, fµ, µ) ⩽ ϕ

 S(fµ, fµ, µ), S(µ, µ, ρ1),
S(µ, µ, fρ1), S(fµ, fµ, µ),
S(fρ1, fρ1, ρ1), S(fµ, fµ, ρ1)


= ϕ

 S(fµ, fµ, µ), S(µ, µ, ρ1),
S(µ, µ, ρ1), S(fµ, fµ, µ),
S(ρ1, ρ1, ρ1), S(fµ, fµ, ρ1)


= ϕ

 S(fµ, fµ, µ), S(µ, µ, ρ1),
S(µ, µ, ρ1), S(fµ, fµ, µ),
1, S(fµ, fµ, ρ1)


= ϕ(S(fµ, fµ, µ), r1, r1, S(fµ, fµ, µ), 1, r1),

since r1 ⩽ (S(fµ, fµ, µ))2r1. Using (ϕ∗), there exists a r ∈ [0, 1) such that

S(fµ, fµ, µ) ⩽ (r1)
r ⩽ (S(fµ, fµ, µ))r ⩽ S(fµ, fµ, µ),

which is a contradiction. Hence µ ∈ Fix(f). Consequently, we getDS
ρ1,r1 ⊂ Fix(f).

Using the similar arguments, you can easily see that

CS
ρ1,r1 ⊂ Fix(f).

□

Now, we present the following illustrative example of the geometric results
established above.

example 3.1. Let Y = [−1, 1] ∪ {−7,−2, 2, 7, 8, 11} and define symmetric
S-multiplicative metric space as

S(µ, τ, ρ) = |cos(µ− τ)ρ|, ∀µ, τ, ρ ∈ Y.
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Also define the function f : Y → Y by

f(µ) =
{ 1, for µ = 7

µ, otherwise,

for all µ ∈ Y and the function ϕ : R+6 → R as

ϕ(t1, t2, t3, t4, t5, t6) = (t2)
r, with r ∈ [0, 1).

Under these hypothesis, we get

r1 = inf{S(µ, µ, fµ) : µ ̸∈ Fix(f)} = inf{S(µ, µ, fµ) : µ = 7} = 1.

(1) If we take ρ1 = −1 and r = 1
2 then f satisfies the conditions of Theorem

3.1. Therefore, we get

CS
ρ1,r1 ⊂ Fix(f) = Y − {7}.

(2) If we take ρ1 = 1
2 and r = 1

2 then f satisfies the conditions of Theorem
3.1. Therefore, we get

DS
ρ1,r1 ⊂ Fix(f) = Y − {7}.
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