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PRIME BI-INTERIOR IDEALS OF SEMIGROUPS

M. Murali Krishna Rao and Noorbhasha Rafi

Abstract. In this paper, we introduce the notion of prime bi-interior ideal,

semiprime bi-interior ideal, irreducible bi-interior ideal, and strongly prime

bi-interior ideal of semigroups. We study properties of these ideals, relations
between them, and also characterize regular semigroups using prime bi-interior

ideals.

1. Introduction

Many mathematicians proved important results and charecterization of al-
gebraic structures by using the concept and the properties of generalization of
ideals in algebraic structures. During 1950-1980, the concepts of bi-ideals, quasi
ideals and interior ideals were studied by many mathematicians.Then the au-
thor [9, 14, 15, 17, 18] introduced and studied weak interior ideals, tri-ideals ,
bi-interior ideals, bi quasi ideals,quasi interior ideals and bi quasi interior ideals
and tri quasi of Γ−semirings, semirings, Γ−semigroups, semigroups and semirings
as a generalization of bi-ideal, quasi ideal and interior ideal of algebraic structures
and charecterized regular algebraic structures as well as simple algebraic structures
using these ideals. Semiring is the algebraic structure which is a common gener-
alization of rings and distributive lattices, was first introduced by Vandiver [20]
in 1934 but non-trivial examples of semirings had appeared in the studies on the
theory of commutative ideals of rings by Dedekind in 19th century. We know that
the notion of a one sided ideal of any algebraic structure is a generalization of an
ideal. The quasi ideals are generalization of left ideal and right ideal whereas the
bi-ideals are generalization of quasi ideals. In 1952, the concept of bi-ideals was
introduced by Good and Hughes [3] for semigroups. The notion of bi-ideals in rings
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and semigroups were introduced by Lajos and Szasz [10–12]. The concept of inte-
rior ideals was introduced by Lajos for semigroups. Steinfeld [19] first introduced
the notion of quasi ideals for semigroups and then for rings. Iseki [2] introduced
the concept of quasi ideal for a semiring. In this paper,as a further generalization
of ideals, M.Shabir [18] studied the prime bi-ideals of semigroups. In this paper,
we introduce the notion of prime bi-interior ideals of semigroups.

2. Preliminaries

In this section we will recall some of the fundamental concepts and definitions,
which are necessary for this paper.

Definition 2.1. [18] A bi-ideal B of S is called a strongly prime bi-ideal if
(B1B2)

⋂
(B2B1) ⊆ B implies B1 ⊆ B or B2 ⊆ B, for any bi-ideals B1 and B2 of

S.

Definition 2.2. [18] A bi-ideal B of S is called a semiprime bi-ideal if for
any bi-ideal B1 of S, B2

1 = B1B1 ⊆ B implies B1 ⊆ B.

Obviously every strongly prime bi-ideal in S is a prime bi-ideal and every prime
bi-ideal in S is a semiprime bi-ideal.

Definition 2.3. [18] A bi-ideal B of S is called an irreducible bi-ideal if
B1

⋂
B2 = B implies B1 = B or B2 = B, for any bi-ideals B1 and B2 of S.

Definition 2.4. [18] A bi-ideal B of S is called a strongly irreducible bi-ideal
if for any bi-idealsB1 and B2 of S, B1

⋂
B2 ⊆ B implies B1 ⊆ B or B2 ⊆ B.

Obviously every strongly irreducible bi-ideal is an irreducible bi-ideal.

Definition 2.5. [18] Let B1 and B2 be bi- ideals of a semigroup M.

(i) If B1B2 ⊆ B ⇒ B1 ⊆ B or B2 ⊆ B then B is prime bi- ideal .
(ii) If (B1B2) ∩ (B2B1) ⊆ B ⇒ B1 ⊆ B or B2 ⊆ B then strongly prime bi-

ideal.

Definition 2.6. [18] A bi- ideal B of a semigroup M is called a semi prime
bi-interior ideal if B1B1 ⊆ B =⇒ B1 ⊆ B, for any bi- ideal B1 of M.

3. Prime bi-interior ideals of semigroups

In this section, we introduction the notion of prime, strongly prime, semi prime,
irreducible and strongyle irreducible bi-interior ideals of semigroups and we study
the properties of prime ideals and relations between them.

Definition 3.1. A bi-interior ideal B of a semigroup M is called a prime
bi-interior ideal of M if B1B2 ⊆ B ⇒ B1 ⊆ B or B2 ⊆ B.

Definition 3.2. A bi-interior ideal B of a semigroup M is called a semi prime
bi-interior ideal of M if for any bi-interior ideal B1 of M, B1B2 ⊆ B =⇒ B1 ⊆ B
and B2 ⊆ B.
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Definition 3.3. A bi-interior ideal B of M is called an irreducible bi-interior
ideal B if bi-interior ideals B1, B2

and B1 ∩B2 ⊆ B =⇒ B1 ⊆ B or B2 ⊆ B.

Definition 3.4. A bi-ideal B of S is called a strongly prime bi-interior ideal
if (B1B2)

⋂
(B2B1) ⊆ B implies B1 ⊆ B or B2 ⊆ B, for any bi-ideals B1 and B2

of S.

Remark 3.1. (i). Every strongly prime bi-interior ideal of a semigroup M is
a prime bi-interior ideal of M.

(ii). Every prime bi-interior ideal B of a semigroupM is a semi prime bi-interior
ideal of M.

Theorem 3.1. A bi-interior ideal B of a semigroup M is a prime bi-interior
ideal if and only if RL ⊆ B =⇒ R ⊆ B or L ⊆ B where R is a right ideal and L
is a left ideal of M.

Proof. Suppose that a prime bi-interior ideal B of the semigroup M and
RL ⊆ B. Since R and L are bi-interior ideals R ⊆ B or L ⊆ B. Conversely suppose
that RL ⊆ B where R is a right ideal and L is a left ideal of M. =⇒ R ⊆ B or
L ⊆ B. Suppose AC ⊆ B, A and C are bi-interior ideals and (a)r, (c)l are right
and left ideals generated by a and c respectively,where a ∈ A and c ∈ B. Then

(a)r(c)l ⊆ AC ⊆ B,

⇒(a)r ⊆ B or (c)l ⊆ B

Then a ∈ B or c ∈ B. Therefore A ⊆ B or C ⊆ B.
Hence a bi-interior ideal B is a prime bi-interior ideal of the semigroup M. □

Theorem 3.2. If B1, B2 are bi-interior ideals of a semigroup M and (B1B2)∩
(B2B1) = B1 ∩ B2 then every bi-interior ideal of a semigroup M is a semi prime
ideal of M..

Proof. Let B be any bi-interior ideal of M and B1B1 ⊆ B, B1 is a bi-interior
ideal of M. Then

B1 =B1 ∩B1

=(B1B1) ∩ (B1B1)

⊆B ∩B

=B.

Hence every bi-interior ideal of M is semi prime. □

Theorem 3.3. M is a regular semigroup if and only if AB = A ∩ B for any
right ideal A and left ideal B of M .

Proof. Let A,B be a right ideal and a left ideal of a regular semigroup M
respectively. Obviously AB ⊆ A ∩ B. Let x ∈ A ∩ B. Since M is a regular, there
exist y ∈ M such that x = xyx. Since xy ∈ A and x ∈ B, xyx ∈ AB. Thus x ∈ AB.
Hence AB = A∩B. Conversely, suppose that AB = A∩B for any right ideal A and
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left ideal B of M . Let x ∈ M and I be the right ideal generated by x and J be the
left ideal generated by x. We have x ∈ I∩J = IJ. Therefore x = xy = zx, y, z ∈ M
which implies that x = xyzx, Hence M is a regular ordered semigroup. □

Theorem 3.4. If BB = B, for all bi-interior ideals of a semigroup M , then
semigroup M is regular and B1 ∩ B2 = (B1B2)(B2B1), for any bi-interior ideals
B1 and B2 of M.

Proof. Suppose BB = B, for all bi-interior ideal B of M. Let R be a right
ideal and L be a left ideal of M. Then R ∩ L is a bi-interior ideal of M. Therefore

(R ∩ L)(R ∩ L)) = (R ∩ L)

⇒R ∩ L ⊆ RL.

We have RL ⊆ R ∩ L. Therefore R ∩ L = RL.
Hence by Theorem 3.3, M is a regular semigroup.

Let B1 and B2 be a bi-interior ideals of M. Then B1 ∩ B2 is a bi-interior ideal of
M

B1 ∩B2 = (B1 ∩B2) = (B1 ∩B2)(B1B2)

⊆ (B1B2).

Similarly we can prove (B1 ∩B2) ⊆ B2B1.
Therefore B1 ∩B2) ⊆ (B1B2) ∩ ((B2B1).

(B1B2) ∩ (B2B1) = (B1B2)(B2B1) ∩ (B1B2)(B2B1)

⊆ B1MB1 ∩MB1M

⊆ B1

Similarly we can prove that (B1B2) ∩ (B2B1) ⊆ B2.
Therefore (B1B2) ∩ (B2B1) ⊆ B1 ∩B2.
Hence (B1B2) ∩ (B2B1) = B1 ∩B2.

□

The following theorem is similar to Theorem in [17], so we omit the proof.

Theorem 3.5. If B is a bi-interior ideal of M and a ∈ M such that a /∈ B
then there exists an irreducible bi-interior ideal I of M such that B ⊆ I and a ∈ I.

Theorem 3.6. Let M be a regular semigroup and BB = B, for all bi-interior
ideal B of M. Then any bi-interior ideal B of M is strongly irreducible bi-interior
ideal if and only if B is a strongly prime bi-interior ideal.

Proof. Let M be a regular semigroup and BB = B, for any bi-interior ideal
B of M. Suppose B is a strongly irreducible bi-interior ideal of M . Then by Theo-
rem 3.4, (B1B2) ∩ (B2B1) = B1 ∩B2, where B1, B2 are bi-interior ideals of M.

(B1B2) ∩ (B2B1) ⊆ B

⇒B1 ∩B2 ⊆ B

⇒B1 ⊆ B or B2 ⊆ B
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Thus B is a strongly prime bi-interior ideal of M.
Conversely suppose B is a strongly prime bi-interior ideals of M. Let B1 ,B1

are bi-interior ideals of M. such that B1B2 ⊆ B,

(B1B2) ∩ (B2B1) = (B1B2)(B2B1) ∩ (B1B2)(B2B1)

⊆ B1MB1 ∩MB1M

⊆ B1

Similarly we can prove that (B1B2) ∩ (B2B1) ⊆ B2.
Therefore (B1B2) ∩ (B2B1) ⊆ B1 ∩B2 ⊆ B.
As B is a strongly prime bi-interior ideals of M.,B1 ⊆ B or B2 ⊆ B Hence B is a
strongly irreducible bi-interior ideal of M . □

Theorem 3.7. If B is an irreducible bi-interior ideal and BB = B of a regular
semigroup M then B is a strongly irreducible ideal of M.

Proof. Let B1 and B2 be bi-interior ideals of M such that B1∩B2 ⊆ B. Then
By Theorem 3.9, (B1B2) ∩ (B2B1) = B1 ∩B2.

(B1B2) ∩ (B2B1) = B1 ∩B2 ⊆ B

=⇒ B1 ⊆ B or B2 ⊆ B.

Therefore B is a strongly irreducible ideal of M. □

Theorem 3.8. Any proper bi-interior ideal B of M is the intersection of all
irreducible bi-interior ideals M containing B.

Proof. Let B be a bi-interior ideal of M and {Bi/i ∈ ∧} be the collection of
irreducible ideals containing B. Then B ⊆

⋂
i∈∧

Bi.

Suppose that a /∈ B. By Theorem3.15, there exists an irreducible bi-interior
ideal I such that B ⊆ I and a ∈ I. Then

a /∈
⋂
i∈∧

Bi,⇒
⋂
i∈∧

Bi ⊆ I.Hence I =
⋂
i∈∧

Bi.

□

Theorem 3.9. The intersection of any family of prime bi- interior ideals of a
semigroup M is a semiprime bi- interior ideal.

Proof. Let {Pi | i ∈ ∆} be the family of prime bi- interior ideals of M.
For any bi- interior ideal B of M,B2 ⊆

⋂
i

Pi implies B2 ⊆ Pi, for all i ∈ ∆.

As Pi are prime bi-interior ideals, Pi are semiprime bi -interior ideals .
Therefore B ⊆ Pi, for all i ∈ ∆.
Hence B ⊆

⋂
i

Pi. □

Remark: Arbitrary intersection of bi- interior ideals of S is also a bi- interior
ideal of M and hence the set of all bi- interior ideals of M forms a complete lattice.

Theorem 3.10. Every strongly irreducible, semiprime bi- interior ideal of a
semigroup M is a strongly prime bi- interior ideal.
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Proof. Let B be a strongly irreducible and semiprime bi- interior ideal of a
semigroup M.
For any bi- interior ideals B1 and B2 of M,

(B1B2) ∩ (B1B2) ⊆ B.

Hence, by Remark, B1 ∩B2 bi- interior ideal of M. Since

(B1 ∩B2)
2 = (B1 ∩B2)(B1 ∩B2) ⊆ (B1 ∩B2).

Similarly, we get (B1 ∩B2)
2 ⊆ (B2 ∩B1).

Therefore (B1 ∩B2)
2 ⊆ (B1 ∩B2) ∩ (B2 ∩B1) ⊆ B.

As B is a semiprime bi- interior ideal of M,B1 ∩B2 ⊆ B.
But B is a strongly irreducible bi- interior ideal. Therefore B1 ⊆ B or B2 ⊆ B.
Hence B is a strongly prime bi- interior ideal of M. □

Theorem 3.11. Following statements are equivalents in a semigroup M :

(1). The set of bi- interior ideals of M is totally ordered set under inclusion
of sets.

(2). Each bi- interior ideal of M is strongly irreducible.
(3). Each bi- interior ideal of M is irreducible.

Proof. Let M be a semigroup M.

(1) ⇒ (2) : Suppose that the set of bi- interior ideals of M is a totally ordered set
under inclusion of sets.

Let B be any bi- interior ideal of M. To show that B is a strongly
irreducible bi- interior ideal of M.

Let B1 and B2 be any two bi- interior ideals of M such that B1∩B2 ⊆
B.

But by the hypothesis we have either B1 ⊆ B2 or B2 ⊆ B1.
Therefore B1 ∩B2 = B1 or B1 ∩B2 = B2.
Hence B1 ⊆ B or B2 ⊆ B.
Thus B is a strongly irreducible bi- interior ideal of M.

(2) ⇒ (3): Suppose that each bi- interior ideal of M is strongly irreducible.
Let B be any bi- interior ideal of M such that B = B1 ∩ B2, for any bi-
interior ideals B1 and B2 of M.
Hence by (2), we have B1 ⊆ B or B2 ⊆ B.
As B ⊆ B1 and B ⊆ B2, we have B1 = B or B2 = B.
Hence B is an irreducible bi- interior ideal of M.

(3) ⇒ (1) : Suppose that each bi- interior ideal of M is an irreducible bi-ideal.
Let B1 and B2 be any two bi- interior ideals of M.
Then B1 ∩B2 is also a bi- interior ideals of M, (from remark ).
Hence B1 ∩B2 = B1 ∩B2 implies B1 ∩B2 = B1 or B1 ∩B2 = B2, by our
assumption.
Therefore either B1 ⊆ B2 or B2 ⊆ B1.
This shows that the set of bi-interior ideals of M is a totally ordered set
under inclusion of sets.

□
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