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Dedicated to Prof. E. Sampathkumar on his 76th birthday

Abstract. C.A. Barefoot, et. al. introduced the concept of the integrity of
a graph. It is an useful measure of vulnerability and it is defined as follows.
I(G) = min{|G|+m(G−S) : S ⊂ V (G) where m(G−S) denotes the order of
the largest component in G− S}. Unlike the connectivity measures, integrity
shows not only the difficulty to break down the network but also the damage
that has been caused. A subset S of V (G) is said to be an I-set if I(G) =
|S| + m(G − S). In this paper, we define the I-critical graphs , I-excellent
graphs and Bondage Integrity number and we study these parameters.

1. Introduction

The stability of a communication network is of prime importance for net-
work designers. In an analysis of the vulnerability of a communication network
to disruption, two quantities that come to our mind are the number of elements
that are not functioning and the size of the largest remaining sub network within
which mutual communications can still occur. In adverse relationship, it would be
desirable for an opponent’s network to be such that the two quantities can be made
simultaneously small. C.A. Barefoot, R.Entriger and H.Swart [1] introduced the
concept of the integrity of a graph. It is an useful measure of vulnerability and it
is defined as follows. I(G) = min{|G| + m(G − S) : S ⊂ V (G)} where m(G − S)
denotes the order of the largest component in G−S. Unlike the connectivity mea-
sures, integrity shows not only the difficulty to break down the network but also
the damage that has been caused.
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2. I-critical graphs

Definition 2.1. [1] The vertex-integrity of G is defined as I(G) = min
S⊂V (G)

{|S|+
m(G− S)} .

Definition 2.2. [1] A set of vertices S in a graph G is an I-set of G if |S| +
m(G− S) = I(G).

Definition 2.3. [1] A graph G is said to be I-minimal if I(G− e) < I(G), for
every edge v ∈ V (G).

Remark 2.1. [1] Note that if G is I-minimal ,then I(G− e) = I(G)− 1, and
because of the monotonicity property of integrity, I(H) < I(G) for every proper
subgraph H of G.

Remark 2.2. [1] Clearly, every graph has an I-minimal subgraph with the
same integrity. Kn is I−minimal graph. K2 is the only I-minimal graph of integrity
2.

Definition 2.4. [1] A graph G is said to be I-critical if I(G− u) < I(G), for
every vertex v ∈ V (G).

Remark 2.3. [1] Clearly, I-critical graph can have no isolate vertices and an
I-minimal graph without such vertices must be I-critical. Some graphs that are
I− critical but not I-minimal are the cycles of square order.

Definition 2.5.

For any graph G, I0(G) = {u ∈ V (G) : I(G− u) = I(G)};
I−(G) = {u ∈ V (G) : I(G− u) < I(G)}.

Proposition 2.1. For any graph G, V (G) = I0(G) ∪ I−(G). That is,
I(G− v) 6 I(G) for every v ∈ V (G).

Proof. Let S be an I-set of G. Then |S|+ m(G− S) = I(G). Let u /∈ S.
I(G− u) 6 |S − {u}|+ m((G− u)− (S − {u}))

= |S − {u}|+ m((G− u)− S)
6 |S − {u}|+ m((G− (S − {u})) = I(G).

Therefore, I(G−u) 6 I(G). Let u ∈ S. Then |S−{u}|+m((G−u)−(S−{u}) =
|S| − 1 + m((G− S) = I(G)− 1. Therefore, I(G− u) 6 I(G). ¤

Remark 2.4. In a graph G, if v is a vertex for which deg(v) > I(G− v), then
I(G− v) = I(G)− 1. That is, v ∈ I−(G).

Proposition 2.2. Let G be a simple and connected graph. Let S be an I-set
of G. Let u ∈ V (G) such that u ∈ I−(G). Then I(G− u) = I(G)− 1.

Proof. Let S be an I-set of G containing u.
|S − {u}|+ m((G− u)− (S − {u})) = |S| − 1 + m(G− S) = I(G)− 1. Therefore,
I(G − u) 6 I(G) − 1. Let S1 be an I-set of G1 = G − u. Since u ∈ I−(G),
I(G1) < I(G)−1. Therefore, |S1|+m((G−u)−S1) 6 I(G)−2. Let S2 = S1∪{u}.
I(G) 6 |S2|+ m(G− S2) = |S1 ∪ {u}|+ m(G− (S1 ∪ {u})).
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= |S1|+ 1 + m((G− u)− S1)
= |S1|+ 1 + m(G1 − S1) = I(G1)− 1
6 I(G)− 1, a contradiction.

Therefore, I(G− u) > I(G)− 1. Hence, I(G− u) = I(G)− 1. ¤
Corollary 2.1. min

u∈V (G)
{I(G− u)} = I(G)− 1.

Proof. For any vertex u ∈ V (G), either u ∈ I0(G) or u ∈ I−(G). If u ∈ I0,
then I(G) = I(G − u). If u ∈ I−, then I(G) = I(G − u) + 1. Since I− is always
nonempty ( any vertex belonging to an I-set of G belongs to I−(G)), there exists
u ∈ I− and hence I(G) = I(G− u) + 1. ¤

Proposition 2.3. Let G be a simple and connected graph.
Then I(G)− 1 6 I(G− u) 6 I(G), for every vertex v ∈ V (G).

Proof follows from corollary 2.1 and proposition 2.2.

Corollary 2.2. Let F be the union of all I-sets of G. Then |F| = I− and
|V (G)| − |F| = I0(G).

Lemma 2.1. Let G be a connected graph. Then every vertex of G is an I-set
of G if and only if G = Kn.

Proof. Let every vertex of G constitute an I-set of G. Let u ∈ V (G). Then
{u} is an I-set of G. Therefore, u ∈ I− and 1 + m(G − u) = I(G). Hence,
m(G − u) = I(G) − 1, for every u ∈ V (G). Since G is connected, there exists at
least two non-cut vertices in G. Let u be a non-cut vertex of G. Then G − u is
connected and hence I(G) = n. Therefore, G is complete. If G is complete, then
clearly, every vertex of G is an I-set of G. ¤

Theorem 2.1. Let G be a graph such that {u} is an I-set of G for every
u ∈ V (G). Then G is connected and hence G is complete.

Proof. Suppose {u} is an I-set for every u ∈ V (G). Suppose that G is
disconnected. Let G1, G2, · · · , Gk be the components of G.
Case(1): There exists exactly one Gi such that |V (Gi)| = m(G). Then for every
non cut vertex u ∈ V (Gi), m(G − u) = m(G) − 1 and for any non cut vertex
v ∈ V (Gj), j 6= i, m(G − v) = m(G), a contradiction (since for any vertex u,
m(G− u) is constant, namely I(G)− 1).
Case(2): There exists at least two components say Gi1, Gi2 such that |V (Gi1)| =
|V (Gi2)| = m(G). Then empty set is the only I-set of G and hence no {u} can be
an I-set of G, a contradiction. Therefore, G is connected. By the above lemma 2.1,
G is complete. ¤

Observation 2.1. If G is disconnected and m(G) = k is attained by at least
k components of G, then I0(G) = V (G) (For: In such a case, empty set is the only
I-set of G).

Theorem 2.2. Let G be a graph. Let S be an I-set of G. Let u ∈ V (G). Then
m(G− S)−m((G− u)− S) 6 1.
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Proof. If u ∈ S, then m(G− S) = m((G− u)− S).
Otherwise, (G− u)− S = (G− (S ∪ {u}).
Case(i): Suppose u is a cut vertex in G− S.
Subcase(a): Let T1 and T2 be two components of maximum order in G − S. If
u ∈ T1 or T2, then also, m((G − S) − u) = m(G − S). If u /∈ T1 and u /∈ T2, then
m((G− S)− u) = m(G− S).
Subcase(b): Suppose that G − S has exactly one component, say T of maximum
order. Then m((G−S)−u) = m(G−S), if u /∈ T . Suppose that u ∈ T . Let T1 be
a component of G−S of next maximum order component. Suppose |T1| 6 |T | − 2.
Let G1 = (G − S) − {u}. In this case, there are at least two component resulting
from T −{u} and the cardinality of each component is less than or equal to |T |−2.

Hence, |S ∪ {u}|+ m(G− S ∪ {u}) 6 |S|+ 1 + |T | − 2
= |S|+ |T | − 1 < |S|+ |T | = I(G). Therefore, S is not

an I-set of G, a contradiction. Thus, |T1| > |T |−1. Since T is a unique component
of maximum cardinality of G − S, |T1| = |T | − 1. Therefore, m(G − (S ∪ {u})) =
|T1| = |T | − 1 = m(G− S)− 1. Thus, m(G− S)−m((G− u)− S) = 1.
Case(ii): Suppose that u is not a cut vertex in G− S.
If G − S has a unique component of maximum order say T and u /∈ T , then
m((G − u) − S) = m(G − S). If u ∈ T , then m((G − u) − S) = m(G − S) − 1. If
G− S has more than one component of maximum order , then m((G− u)− S) =
m(G− S). ¤

Proposition 2.4. Let S be an I-set of G and u /∈ S. Suppose G − S has a
unique component of maximum order, say T and let u ∈ T . Then S ∪ {u} is an
I-set of G.

Proof. By the hypothesis, m(G− S) = m((G− u)− S) + 1.
|S ∪ {u}| + m((G − u) − S) = |S| + 1 + m(G − S) − 1 = |S| + m(G − S) = I(G).
Therefore, S ∪ {u} is an I-set of G. ¤

Theorem 2.3. Let G be a simple graph. Let S be an I-set of G. Let u ∈ V (G).
Then u ∈ I0(G) if and only if u does not belong to any I-set of G.

Proof. Let S be an I-set of G. Let u ∈ V (G). Let u ∈ I0(G). Then I(G−u) =
I(G). Suppose that u ∈ S. Then |S|+ m(G− S) = I(G) = |S|+ m((G− u)− S).
I(G− u) 6 |S − u|+ m((G− u)− (S − u)) = I(G)− 1.
Therefore, I(G− u) < I(G), a contradiction. Therefore, u /∈ S.
Conversely, let S be any I-set of G and let u be not a vertex of any I-set of G.
Suppose that m(G − S) −m((G − u) − S) = 1. Then u ∈ T , where T is a unique
maximum order component of G − S. By the proposition 2.4, S ∪ {u} is an I-set
of G, a contradiction. Therefore, m(G− S) = m((G− u)− S). Now,

I(G− u) 6 |S|+ m((G− u)− S) = |S|+ m(G− S) = I(G).
Let S1 be an I-set of G − u. Then I(G) 6 |S1 ∪ {u}| + m(G − (s ∪ {u})) =
|S1|+ 1 + m((G− u)− S1) = I(G− u) + 1.
If I(G) = I(G − u) + 1, then S1 ∪ {u} is an I-set of G, a contradiction, since
u does not belong to any I-set of G. As I(G − u) 6 I(G) 6 I(G − u) + 1 and
I(G) 6= I(G− u) + 1, it follows that I(G) = I(G− u). Hence u ∈ I0. ¤
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Corollary 2.3. Let G be a simple graph. Let S be an I-set of G. Let u ∈
V (G). Then u ∈ I− if and only if u belongs to some I-set of G.

3. I-excellent graphs

Definition 3.1. A vertex of V (G) is called I-good if it is contained in some
I-set of G. A vertex of V (G) is called I-bad if it does not belong to any I-set of G.
A graph G is called I-excellent if every vertex in V (G) is I-good.

u u u u

u u u uu u u u

u1
u2 u3

u4

u5 u6 u7 u8 u9 u10 u11 u12

G :

I(G) = 5 and {u1, u2, u3, u4}; {u1, u2}; {u2, u4} are the I-sets of G. Thus,
u1, u2, u3, u4 are the I-good vertices of G and the remaining vertices of G are I-
bad.

Remark 3.1. I-critical graphs are I-excellent.

Corollary 3.1. For every vertex u in an I-set of G, I(G) = I(G − u) + 1.
Hence, if G is I-excellent, then for any u ∈ V (G) , I(G) = I(G− u) + 1.

Remark 3.2. G is I-excellent if and only if V (G) = I−.

Remark 3.3. An I-excellent graph G may be disconnected.

Exmple 3.1.
u

u

u
u

u

u

u

u

u

u1

u2

u3

u4

u5

u6 u7

u8u9

G

The I-sets of G are {u1}, {u5}, {u3, u6, u8}, {u3, u7, u9}, {u2, u4, u6, u8} and
I(G) = 5. Thus, G is I-excellent.

Proposition 3.1. The Path Pn is I-excellent if and only if n = dk+2
2 edk+3

2 e,
where k = 1, 2, 3, · · · .

Proof. Let V (Pn) = {u1, u2, · · · , un}. Let k = 2r − 1 or 2r, r = 1, 2, 3 · · · .
Consider the sets {u1, ur+2, u2r+3, · · · , un−r}; {u2, ur+3, u2r+4, · · · , un−r+1}; · · · ,
{ur+1, u2r+2, u3r+3, · · · , un}. These are I-sets (for any of those sets S, |S| = t or



22 R. SUNDARESWARAN R AND V. SWAMINATHAN

t + 1 according as n = t2 or n is not a perfect square and t2 < n < (t + 1)2 and
m(Pn − S) = r and I(Pn) = t + r or t + r + 1). Clearly every vertex belongs to an
I-set of Pn and hence Pn is I-excellent.
Claim : Pn is not I-excellent when n 6= dn+2

2 edn+3
2 e, k = 1, 2, · · · .

Proof of the claim: Let n 6= dn+2
2 edn+3

2 e, k = 1, 2, · · · . Then n is not a perfect
square. Let t2 < n < (t + 1)2. Then n 6= t(t + 1).
Therefore, n = t2+1, · · · , t2+t−1, t2+t+1, · · · , t2+2t. When t2+1 6 n 6 t2+t−1,
I(Pn) = I(Pt2) = 2t− 1 and when t2 + t + 1 6 n 6 t2 + 2t, I(Pn) = 2t.
Case(i): t2 + 1 6 n 6 t2 + t− 1.
Suppose V (Pn) is I-excellent. Then there exists an I-set S of Pn containing u1.
Let |S| = l. Since I(Pn) = 2t− 1, m(G− S) = 2t− 1− l.
Suppose n = t2 + i, 1 6 i 6 t− 1. Then
S = {u1, u2t−l+r, u2(2t−l)+1, · · · , us(2t−l)+1}. Hence |S| = s + 1 = l. Therefore,
s = l − 1.
t2 + i− s(2t− l) + 1 6 2t + l − 1. That is, t2 + i + 2 6 (s + 1)(2t− l) = l(2t− l).
l2 − 2tl + (t2 + i + 2) 6 0. The roots of the quadratic equation in the L.H.S are

l = 2t±
√

4t2−4(t2+i+2)

2 , which are imaginary, a contradiction. Therefore, there is no
I-set containing u. Hence in this case, Pn is not I-excellent.
Case(ii): t2 + t + 1 6 n 6 t2 + 2t.
Using a similar argument as in case (i), it can be proved that, Pn is not I-excellent.
The converse is obvious. ¤

Proposition 3.2. Kn is I-excellent.

Proof. Since I(Kn) = n , any singleton of V (Kn) is an I-set of Kn. ¤

Proposition 3.3. Cn is I-excellent.

Corollary 3.2. Wn is I-excellent. For: Any I-set of Wn is obtained by adding
the center vertex to every I-set of Cn.

Proposition 3.4. Kn,n is I-excellent.

Proof. Since I(Kn,n) = n + 1 , any one of the partite sets of V (Kn,n) is an
I-set of Kn,n. ¤

Theorem 3.1. Every vertex transitive graph is I-excellent.

Proof. Let G be a vertex transitive graph. Let S be an I-set of G. Let u ∈ S.
Let v belong to V (G) and u 6= v. Since G is vertex transitive, there exists an
automorphism φ : V (G) → V (G) such that φ(u) = v. Consider φ(S). Let T be a
maximum order component of G− S.
Claim: φ(T ) is a maximum order component of G− φ(S).
As T is connected, φ(T ) is connected. Suppose there exists a component T ′ in
G− φ(S) such that |V (T ′)| > |V (φ(T ))|. Let W = φ−1(T ′). Let x ∈ V (W ). Then
φ(x) ∈ V (T ′) ⊂ G − φ(S). Therefore, x ∈ V − S (since φ(V − S) = V − φ(S)).
Therefore, W ⊆ V − S. Clearly, W is a component of V − S. |W | = |φ−1(T ′)| =
|T ′| > |φ(T )| = |T |. Therefore, |V (W )| > |V (T )|, a contradiction. Hence, φ(T )
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is a maximum order component of G − φ(S). Therefore, |φ(S)| + m(G − φ(S)) =
|S|+ |φ(T )| = |S|+ |V (T )| = I(G), which implies, φ(S) is an I-set of G. ¤

Remark 3.4.

There exist I-excellent graphs which are not vertex transitive.

Exmple 3.2.

u u

u u

u u

u uu u

u1 u2 u3 u4

u5 u7

u6

u8 u10

u9G :

It can be easily seen that for any subset S of V (G), |S|+ m(G− S) > 6. The
I-sets of G are {u1, u4, u7, u8}; {u2, u3}; {u2, u8}; {u2, u9}; {u3, u7}; {u3, u5};
{u3, u6}; {u2, u10}. For these sets, |S|+m(G−S) = 6. Therefore, I(G) = 6. Hence,
G is I-excellent but G is not vertex transitive.

Exmple 3.3.

The path Pn with n = dk+2
2 edk+3

2 e, where k is a non-negative integer, is I-
excellent but not vertex transitive.

Remark 3.5. There exist regular graphs which are not I-excellent.

Exmple 3.4.

u

u

u

u u

u

u u

u

u1
u2 u3 u4

u5
u6

u7

u8 u9

G :

G is regular but not I-excellent. Here the only I-sets are {u4, u5, u7} and
{u1, u7, u9} with I(G) = 6.

Proposition 3.5. Let G be a disconnected graph with unique maximum order
component. Then there exists at least one u ∈ V (G) such that {u} is not an I-set
of G.

Proof. Suppose {u} is an I-set of G for every u ∈ V (G). Then m(G − u) =
constant = I(G)−1, for every u ∈ V (G). Let G1, G2, G3, · · · , Gr be the components
of G. Let u ∈ V (G).
Then m(G − u) = max {m(G1 − u), |V (G2)|, · · · , |V (Gr)|}. By hypothesis, there
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exists a unique Gi say G1 such that |V (G1)| > |V (Gj)|, for every j 6= 1. For
any vertex u ∈ V (G1) , m(G − u) < |V (G1)| and for any vertex u /∈ V (G1),
m(G− u) = |V (G1)|, a contradiction.
Hence, every vertex u /∈ V (G1) is such that {u} is not an I-set of G. ¤

Lemma 3.1. Let G be any graph of order n. Then G + Kn,n has integrity
2n + 1 and any I-set of G + Kn,n is obtained by taking an I-set of Kn,n together
with V (G).

Proof. Let H = G+Kn,n. Since I(G1+G2) = min{I(G1)+ |V (G2)|, I(G2)+
|V (G1)|}, I(H) = min{I(G) + 2n, 2n + 1} = 2n + 1. Let S be any I-set of H.
Suppose there exists x ∈ V (G) such that x /∈ S. Then m(H − S) = |V (H)| − |S|.
Therefore, |S| + m(H − S) = |V (H)| and hence, S is not an I-set of H, which
implies, any I-set of H contains V (G). Let (V1, V2) be the bipartition of Kn,n.
Suppose S ∩ V1 6= ∅ and V1 6⊂ S. Then |S|+ m(G− S) = |V (H)|. Therefore, S is
not an I-set. Similarly, S ∩ V2 6= ∅ and V2 6⊂ S are not possible if S is an I-set of
H. Therefore, either V1 ⊂ S and S ∩ V2 = ∅ or V2 ⊂ S and S ∩ V1 = ∅. ¤

Corollary 3.3. Any graph G is an induced subgraph of an I-excellent graph.

Corollary 3.4. There is no forbidden subgraph characterization of the class
of I-excellent graphs.

Proposition 3.6. Let G be a graph which is not I-excellent. Suppose G has a
unique I-bad vertex, say u. If u belongs to a maximum order component in every
I-set of G, then there exists a I-excellent graph H such that

(i) I(H) = I(G) + 1
(ii) H is I-excellent.
(iii) G is an induced subgraph of H.

Proof. Add a pendent vertex v to u. Let H be the resulting graph. Then any
I-set of G, say S, will satisfy |S|+m(H−S) = |S|+m(G−S)+1 = I(G)+1. Let S
be any I-set of G. Then |S∪{u}|+m(H−(S∪{u})) = |S|+1+m(G−S) = I(G)+1.
|S∪{v}|+m(H−(S∪{v})) = |S|+1+m(G−S) = I(G)+1. Thus I(H) 6 I(G)+1.
Suppose that I(H) = I(G). Let S1 be any I-set of H.
Then |S1|+ m(H − S1) = I(H) = I(G) 6 |S1|+ m(G− S1).
But m(G− S1) 6 m(H − S1). Therefore, |S1|+ m(G− S1) 6 |S1|+ m(H − S1) =
I(G) 6 |S1|+ m(G− S1). Therefore, S1 is an I-set of G.
Then |S1|+m(H−S1) = I(G)+1, a contradiction. Therefore, I(H) > I(G). Hence,
I(H) = I(G)+ 1. Thus, H is I-excellent containing G as an induced subgraph and
I(H) = I(G) + 1. ¤

Illustration 3.1.
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u7

u8

u6

u1

u2 u3

u4u5

G2 :

u1 u2

u5

u6

u4
u3

The I-sets of G1 are {u1, u5}; {u2, u6}; {u3, u5, u8}; {u2, u4, u6, u8} and
I(G1) = 5. The I-sets of G2 are {u1, u3, u5}; {u2, u4} and I(G2) = 4. By adding
a pendent vertex to u7 in G1 and u6 in G2, the resulting graph is an I-excellent
graph containing G1 and G2.

Proposition 3.7. Let G be a graph with a unique I-bad vertex u. Then G−u
is I-excellent.

Proof. Since u is I-bad, I(G − u) = I(G). Let S be any I-set of G. Then
|S|+ m(G− S) = I(G) = I(G− u) 6 |S|+ m((G− u)− S).
Case(1): m((G− u)− S) = m(G− S). Then S is an I-set of G− u.
Case(2): m((G− u)− S) = m(G− S)− 1.
Then I(G− u) 6 |S|+ m(G−S)− 1 = I(G)− 1, a contradiction, since I(G− u) =
I(G). Hence S is an I-set of G − u and since every vertex in G − u is an element
of some I-set of G, G− u is I-excellent. ¤

Remark 3.6. There exists a graph G containing two I-bad vertices and removal
of one of them makes the resulting graph is I-excellent.

Exmple 3.5.

v v

vv

G :

u1 u2

u4
u3

@
@

@
@

@
@@

In G, u2 and u4 are I-bad vertices but G−{u2} and G−{u4} are I-excellent.
Kn − {e} is another example.

Proposition 3.8. Let G be a connected graph. Let u ∈ V (G) satisfy the
property that for every v ∈ V (G), v 6= u, there exists an I-set of G containing u
and v. Let H be the graph obtained from G by making v as a full degree vertex in
G. Then every I-set of G containing u is an I-set of H.

Proof. Let S be an I-set of G containing u. Adding an edge in < S > (or)
an edge from S to V − S will not affect the value of |S|+ m(G− S). Since for any
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v ∈ V (G), there exists an I-set containing u and v, joining v with every vertex of
G will not change |S|+ m(G− S) for any I-set S containing u. ¤

Proposition 3.9. Let T be a tree and S be an I-set of T . If x is a pendent
vertex with support y, then x and y together can not belong to S.

Proof. If x and y belong to S, then |S − {x}| + m(G − (S − {x})) < |S| +
m(G− S), a contradiction. ¤

Proposition 3.10. Let G be a graph. Let u be a non support and non pendent
vertex belonging to an I-set of G. Attach a pendent vertex v to u. In the resulting
graph H, v is a I-bad vertex and u is a I-good vertex.

Proof. Suppose that v is I-good in H. Let S be an I-set of H containing v.
Suppose that u ∈ S. Then m(H − S) = m(G− S).
I(H) = |S|+ m(H − S) = |S|+ m(G− S).
Consider S − {v}. m(H − (S − {v})) = m(G− S).
Therefore, I(H) 6 |S − {v}|+ m(H − (S − {v}))

= |S| − 1 + m(G− S)
= |S|−1+m(H−S), a contradiction. Therefore, u /∈ S. Clearly,

I(G) 6 I(H). Let S1 be an I-set of G containing u. In H, m(H−S1) = m(G−S1),
since v is a singleton component in H−S1. Therefore, I(H) 6 |S1|+m(H−S1) =
|S1|+ m(G− S1) = I(G). Hence, I(H) = I(G). Therefore, u is a I-good vertex in
H. I(G) = I(H) = |S|+ m(H −S) = |S|+ m(G−S) ( since v ∈ S, < H −S >=<
G− S >). Therefore, I(G) = |S|+ m(G− S). Let S2 be the subset obtained from
S by removing v. Then S2 ⊂ V (G) and < G− S2 > with respect to G is the same
as < G− S > with respect H.
Therefore, I(G) 6 |S2|+ m(G− S2) = |S| − 1 + m(G− S) = I(G)− 1,
a contradiction. Hence, v is a I-bad vertex in H. ¤

Proposition 3.11. Let G and H be as in Proposition 3.10. Every vertex w of
G which is I-good in G is I-good in H if and only if either u belongs to an I-set of
G containing w (or) u does not belong to a maximum order component of G − S,
where S is an I-set of G containing w.

Proof. Let u ∈ V (G) be I-good in G. Suppose u belongs to an I-set of G
containing w. Then |S| + m(H − S) = |S| + m(G − S) = I(G) = I(H), which
means, S is an I-set of H containing w. Therefore, w is I-good in H. Suppose u
does not belong to any I-set, say S of G containing w and u does not belong to
any maximum order component of G − S. Then, v being adjacent to u in H − S
will increase the order of the component of H − S containing u. As u does not
belong to any maximum order component of G − S, m(G − S) = m(H − S) and
|S|+m(H−S) = |S|+m(G−S) = I(G) = I(H). Hence, w is I-good in H. Suppose
u does not belong to any I-set of G containing w and u belongs to a maximum
order component of G − S for any I-set S of G containing w. Let S be an I-set
of G containing w.Then u /∈ S and u belongs to a maximum order component of
G− S. Therefore,
|S|+ m(H − S) = |S|+ m(G− S) + 1 = I(G) + 1 = I(H) + 1.
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Therefore, S is not an I-set of H. Thus any I-set of G containing w is not an I-set
of H. Suppose w is I-good in H. Let S1 be an I-set of H containing w.
Case(i): Suppose that v /∈ S1. Then S1 ⊂ V (G).
Now m(G−S1) 6 m(H−S1). Therefore, I(G) 6 |S1|+m(G−S1) 6 |S1|+m(H−
S1) = I(H) = I(G). Therefore, S1 is an I-set of G containing w. But any I-set of
G containing w is not an I-set of H, a contradiction.
Case(ii):Suppose that v ∈ S1. Therefore, u /∈ S1 (since S1 is an I-set of H). If u is
not in a maximum order component of H−S1, then |S1−{v}|+m(H−(S1−{v}) =
|S1| − 1 + m(H − S1) < |S1|+ m(H − S1) = I(H), a contradiction. Therefore, u is
in a maximum order component of H − S1. Thus, S2 = S1 − {v} is an I-set of H
contained in V (G). Since w ∈ S2, S2 is an I-set of H and v /∈ S2, a contradiction
(by case(i)). Hence w is not I-good in H. ¤

Exmple 3.6.

u uu u

u

u uu u

G : H :

u1 u1u2 u2

u5

u4 u4
u3 u3

G is I-excellent with I(G) = 3. I(H) = 3 and the only I-good vertices in H
are u2 and u4. Even though u1 and u3 are I-good in G, they become I-bad in H
since u2 belongs to maximum order component of the unique I-set containing u1

and u3 in G.

Proposition 3.12. For any I-excellent graph G, every pendent vertex is in
some I-set of G and no pendent vertex is in every I-set of G.

Proof. Since G is I-excellent graph, every vertex and in particular every
pendent vertex of G is in some I-set of G. Let x be an pendent vertex of G
and let x ∈ S where S is an I-set of G. Let y be the support of x. If y ∈ S,
then |S − {x}|+ m(G− (S − {x})) = |S| − 1 + m(G− S) < I(G), a contradiction.
Therefore, y /∈ S. Let S1 = S∪{y}−{x}. Then m(G−S1) = m(G−S). Therefore,
S1 is an I-set of G not containing x. ¤

Proposition 3.13. Let T be a tree with order greater than or equal to 2. Let
x be a pendent vertex of T belonging to an I-set of T . Then there exists an I-set
of T such that S is not independent.

Proof. Let x be a pendent vertex and y be its support.
If T = K2, then S = {x, y} is an I-set of T which is not independent. Let |V (T )| >
3. Let S be an I-set of T containing x. Clearly, y /∈ S. If S is independent, then
for any vertex z ∈ S, there exists a vertex z1 /∈ S such that z and z1 are adjacent
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(note that S = {x} is not possible, since, otherwise |S + m(G − S) = |V (T )|, a
contradiction).
Case(i): Suppose that y is not in a maximum order component of T − S. Then
S1 = S − {x} ∪ {z1} is an I-set of T which is not independent.
Case(ii): Suppose that y is in a maximum order component of T − S. Since T is
connected, there exists a path from y to z1. If every vertex in this path belongs to
T − S, then z1 belongs to the maximum order component of T − S containing y.
Then S − {x} ∪ {z1} is an I-set of T containing the edge zz1. Suppose that the
path from y to z1 intersects S. Let y1 be the first vertex in this path belonging to
S. Let y2 be the adjacent vertex of y1 in T − S. Then S − {x} ∪ {y2} is an I-set
of T containing the edge y1y2. In both cases, S contains an edge. Therefore, S is
not independent. ¤

Corollary 3.5. If T is an I-excellent tree, then there exists an I-set S such
that S is not independent.

4. Bondage Integrity number in graphs

Definition 4.1. [2] The bondage integrity number of G is the minimum cardi-
nality of a smallest set E1(G) of edges for which I(G−E1) < I(G) and is denoted
by bI(G).

Remark 4.1.

For any connected graph G, 1 6 bI(G) 6 m, where m = |E(G)|.
Theorem 4.1. Let G be a connected graph. Then bI(G) = |E(G)| if and only

if G = K1,n.

Proof. Let G = K1,n. Then I(K1,n) = 2. Let E1 be a subset of E(G)
of cardinality k 6 n such that I(K1,n − E1) < 2. That is, I(K1,n − E1) = 1.
Therefore, K1,n − E1 is totally disconnected. Therefore, E1 = E(K1,n). Thus,
bI(G) = |E(G)|.
Conversely, let G be a connected graph with bI(G) = |E(G)|. That is, I(G −
E(G)) < I(G) and for any proper subset E1 of E(G), I(G − E1) = I(G). Let E1

be contain |E(G)| − 1 edges. Then G − E1 is a subgraph of G with exactly one
edge. Therefore, I(G− E1) = 2 and hence, I(G) = 2. Therefore, G = K1,n (since
I(G) = 2 if and only if G = K1,n). ¤

Proposition 4.1. The bondage integrity number of the complete graph
Kn (n > 2) is bI(Kn) = 1.

Proof. Let V (Kn) = {v1, v2, · · · , vn}. Let v1v2 ∈ E(Kn). Let H = Kn−v1v2.
Then I(H) = n− 1 < I(Kn) (since {v3, v4, · · · , vn} is an I-set of (Kn − v1v2), we
get only isolated vertices v1, v2). Hence bI(Kn) = 1. ¤

Proposition 4.2. The bondage integrity number of the path of order

n > 2 is given by bI(Pn) =

{
2, if n = dk+2

2 edk+3
2 e − 1, k > 0

1 otherwise
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Proof. It can be easily seen that the removal of at most two edges reduces
the integrity of P2, P3 and P4.
Case(i): Let n = dk+2

2 edk+3
2 e − 1, k = 1, 2, · · · . For 5 6 n 6 23, the removal of

second and the last but one edge decreases the integrity. The removal (k + 2)th,
(k > 1) edge and last but one edge for all paths Pn, n = dk+2

2 edk+3
2 e−1, k = 1, 2, · · ·

with k2 + 8k + 15 6 n 6 k2 + 10k + 23 results in a graph whose integrity is less
than I(Pn). Therefore, bI(Pn) 6 2 when n = dk+2

2 edk+3
2 e − 1, k = 1, 2, · · · .

It can be easily verified that the removal of any one edge does not decrease the
integrity of Pn, when n = dk+2

2 edk+3
2 e − 1 , k = 0, 1, 2, · · · . Therefore, bI(Pn) = 2.

Case(ii): Let n = dk+2
2 edk+3

2 e, k = 1, 2, · · · . Then the removal of either the first
edge or the last edge decrease the integrity. Therefore, bI(Pn) = 1.
It can be easily seen that the removal of at most two edges reduces the integrity of
P6.
Case(ii): Let n 6= dk+2

2 edk+3
2 e and n 6= dk+2

2 edk+3
2 e − 1, k = 1, 2, · · · . For

5 6 n 6 23, the removal of second and the last but one edge decreases the integrity.
then the removal of (k + 2)th,(k > 1)-edge reduces the integrity of Pn, when n 6=
dk+2

2 edk+3
2 e − 1 and n 6= dk+2

2 edk+3
2 e − 1.

Therefore, bI(Pn) = 1. ¤

Proposition 4.3. The bondage integrity number of the cycle of order

n > 3 is given by bI(Cn) =

{
2 if n = dk+2

2 edk+3
2 e, k > 0

1 otherwise

Proposition 4.4. Let G be a connected graph . Then bI(G) 6= m − 1, where
m = |E(G)|.

Proof. Let bI(G) = m − 1. Then I(G − (|E(G)| − 1)) < I(G), and for any
proper subset E1(G) of E(G) with |E1| 6 |E(G)|−1. Then I(G−E1) = I(G). Let
|E1| = m− 2. Then G−E1 is a subgraph of G with exactly two edges. Therefore,
I(G−E1) = 2. Hence,I(G) = 2. Thus, G−E1 is K1,n. But G is K1,n if and only if
bI(G) = |E(G)|, a contradiction. Thus, there exists no graph G with bI(G) = m−1.
Hence bI(G) 6= m− 1. ¤

Remark 4.2. Let d = min{deg(u) : u ∈ S, for some I-set S of G}. Then
bI(G) 6 d.

Remark 4.3. If a vertex v ∈ V (G) of degree δ(G) belongs to an I-set of G,
then bI(G) 6 δ(G).

Proposition 4.5. Let G be a connected graph. Let S be an I-set of G. Let
u ∈ S. Then bI(G) 6 ∆(G).

Proof. Let S be an I-set of G. Let u ∈ S. Remove all the edges incident at
u. Let H be the resulting graph. Then I(H) < I(G). Hence bI(G) 6 deg(u) 6
∆(G). ¤

Remark 4.4. The bound is sharp as seen from Km,n or P5.
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Remark 4.5. In Kn, bI(G) = 1 and ∆(G) = n − 1. Thus the difference
between bI(G) and ∆(G) may be large. That is, given any positive integer k,
∆(G)− bI(G) = k where G = Kk+2.

Proposition 4.6. If bI(G) = ∆(G), then every I-set of G has at least two
maximum order component in G− S.

Proof. If an I-set S has a unique maximum order component, say T then
for some u ∈ T , deg<T>(u) < ∆(G). (If deg<T>(u) = ∆(G) for all u ∈ T , then
T is a proper component of G, a contradiction, since G is connected.) Therefore,
removing all the edges in T incident at u, m(G−S) gets reduced and bI(G) < ∆(G)
in the resulting graph, a contradiction. Therefore, every I-set of G has at least two
maximum order components. ¤

Remark 4.6. If bI(G) = ∆(G), then no I-set of T contains any pendent vertex.

Observation 4.1. Let S be a non I-set of G. Let T1, T2, · · · , Tk be the k

maximum order components of G − S. Suppose
k∑

i=1

κ′(Ti) = t. Remove κ′(Ti)

edges in each component so that the maximum order of the remaining components
is least. Let l be that order. Suppose |S|+ l = I(G) + k1, k1 > 0. Choose vertices
u1, u2, · · · , u(k1+1) such that m(G−(S−{u1, u2, · · · , u(k1+1)})) is minimum. Let k2

be the minimum number of edges whose removal reduces the order of the maximum
order component to l. Then the set S − {u1, u2, · · · , u(k1+1)} reduces the integrity

in the resulting graph. Then k2 +
k∑

i=1

κ′(Ti) < ∆(G) if and only if bI(G) < ∆(G).

Theorem 4.2. Let S be an I-set of G. If V − S has k maximum order com-
ponents say T1, T2, · · · , Tk then for every ui ∈ Ti, 1 6 i 6 k.

bI(G) = ∆(G) if and only if
(1) for any vertex u in any I-set S of G, every vertex in N(u) is contained

in some maximum order component of G − S. That is, for every vertex
u ∈ S, |N(u) ∩ (V − S)| = ∆(G).

(2) for any vertex u ∈ S, every vertex in N(u) is contained in some maximum
order component of G− S.

(3)
k∑

i=1

κ′(Ti) = ∆(G).

(4) for any non I-set of V (G), k2 +
k∑

i=1

κ′(Ti) = ∆(G).

Proof. Let bI(G) = ∆(G).
(1) Let S be an I-set of G such that among all the I-sets of G, S contains a

vertex u such that |N(u) ∩ (V − S)| is minimum.
Then bI(G) 6 |N(u) ∩ (V − S)|.
Therefore, ∆(G) = bI(G) 6 |N(u) ∩ (V − S)| 6 ∆(G).
Thus, |N(u) ∩ (V − S)| = ∆(G). Therefore, u is of degree ∆(G) and u
has ∆(G) neighbours in V − S. Hence, every vertex in every I-set of G
has ∆(G) neighbours in V − S.
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(2) Suppose there exists a vertex u in an I-set S such that there exists a vertex
v in N(u) which is not contained in any maximum order component of
G− S. Then remove all the edges incident at u except uv.
In the resulting graph H, S − {u} is a subset of V (H) such that
|S − {u}|+ m(H − (S − {u})) = |S| − 1 + m(G− S) < I(G).
Therefore, bI(G) 6 ∆(G) − 1, a contradiction. Hence, for every vertex
u ∈ S, |N(u) ∩ (V − S)| = ∆(G).

(3) Suppose
k∑

i=1

κ′(Ti) < ∆(G)−1. Then remove all that edges which reduces

the integrity of the graph. Therefore, bI(G) < ∆(G), a contradiction.
(4) Suppose, there exists a non I-set of V (G) such that

k2 +
k∑

i=1

κ′(Ti) < ∆(G). By observation 4.1, bI(G) < ∆(G), we get a

contradiction.
Conversely, let the conditions in the theorem hold. Suppose that bI(G) = k <

∆(G). Suppose that there exists an I-set S such that the removal of k edges in G
decreases the integrity of G.

Then either
k∑

i=1

κ′(Ti) < ∆(G) or |N(u) ∩ (V − S)| < ∆(G) for some u ∈ S or

|N(u) ∩ (V − S)| = ∆(G) and there exists a vertex u ∈ S which is not contained
in any maximum order component of G − S, a contradiction. Therefore, bI(G) =
∆(G). Suppose that there exists a non I-set S1 of V (G) such that removal of k

edges reduces the integrity of G. Then k2 +
k∑

i=1

κ′(Ti) = ∆(G), a contradiction.

Hence the theorem. ¤

Proposition 4.7. Let S be a subset of V (G). If there exists u ∈ S such that
every vertex in N(u) ∩ (V − S) does not belong to any maximum order component
in G−S and if N(u)∩ (V −S) intersects components T1, T2, · · · , Tk in G−S, then
k∑

i=1

|Ti| < m(G− S) , then S is not an I-set of G.

Proof. Suppose the condition in the proposition is true.
Then |S − {u}|+ m(G− (S − {u})) = |S| − 1 + m(G− S). Therefore, S is not an
I-set. ¤

Corollary 4.1. If S is an I-set of G, then every vertex of S is adjacent to
at least one maximum order component of G − S or if N(u) ∩ (V − S) intersects

components the T1, T2, · · · , Tk in G− S, then
k∑

i=1

|Ti| < m(G− S).

Proposition 4.8. Let G be a simple graph. Let S be an I-set of G. Then
bI(G) = 1 if and only if there exists an I-set S of G such that either G − S
has a unique maximum order component, say T and κ′(T ) = 1 (or) there exists
u ∈ S such that u is adjacent to exactly one vertex of exactly one maximum order
component of G − S and if u is adjacent to two or more non maximum order
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components, then the sum of the order of such components should not exceed the
cardinality of a maximum order component of G− S.

Proof. Let S be an I-set of G. Let bI(G) = 1. Then there exists uv ∈ E(G)
such that I(G− uv) < I(G).
Case(i):

Let uv ∈< G− S >. If uv belongs to either a non maximum order component
or a maximum order component, with another maximum order component existing
in G− S (or) it belongs to a unique maximum order component of G− S but not
a cut edge of that component, then
I(G−uv) = I(G), a contradiction. Therefore, G−S contains exactly one maximum
order component and uv is a cut edge of that component. That is, G − S has a
unique maximum order component T and κ′(T ) = 1.
Case(ii):

u ∈ S and v ∈ V (G − S). If v belongs to a non maximum order component
say T , then as u is adjacent to a maximum order component of G − S , we get
that I(G− uv) = I(G), a contradiction. Therefore, v belongs to a maximum order
component say T . If u is adjacent to more than one vertex of T (or) u is adjacent
to more non maximum order components with sum of their orders greater than the
cardinality of a maximum order component of G − S, then I(G − uv) = I(G), a
contradiction. Therefore, v belongs to a maximum order component say T and u
is adjacent only to v in T and it is not adjacent to any maximum order component
of G− S.
The converse is obvious. ¤

Proposition 4.9. Let S be an non I-set of G such that |S| + m(G − S) =
I(G) + k, k > 1. Then bI(G) = 1 if and only if either G − S has a maximum
order component T with a cut edge e such that the cardinality of every component
of T − e is less than or equal to |T | − (k + 1) (or) if G− S has a unique maximum
order component T with a cut edge e such that the cardinality of the maximum
order component of T − e is |T | − l where l = k + 1− r, r > 1 , then there exists a
set S1 of vertices u1, u2, · · · , ul+1 such that the maximum order component of
G− (S − {u1, u2, · · · , ul+1}) is |T | − l + 1.

Proof. Let S be a non I-set of G such that |S|+m(G−S) = I(G)+k, k > 1.
Let bI(G) = 1 . Then there exists uv ∈ E(G) such that I(G− uv) < I(G).
Case(i):

Let uv ∈< G− S >. If uv belongs to either a non maximum order component
or a maximum order component, with another maximum order component existing
in G− S (or) it belongs to a unique maximum order component of G− S but not
a cut edge of that component, then I(G− uv) = I(G), a contradiction. Therefore,
G−S contains exactly one maximum order component and uv is a cut edge of that
component. If the removal of uv from T results in components of order less than
or equal to |T | − (k + 1), then I(G− uv) < I(G), a contradiction. Therefore, every
component of T − uv has order less than or equal to |T | − (k + 1).
Case(ii):
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u ∈ S and v ∈ V (G − S). In this case, |S| + m(G − s) can be reduced by at
most one by the removal of uv by shifting u from S to V − S. Hence the resulting
set say S1 satisfies |S1|+ m(G−S1) > I(G), a contradiction. Suppose the removal
of e from T results in a component of T results in a component of T of maximum
order |T | − l where l = k + 1− r, r > 1. Then |S|+ m(G− S − e) > I(G). Hence,
we require a set S1 of l + 1 vertices to be removed from S such that the maximum
order component of G− (S − S1) is less than or equal to |T | − l + 1, in which case
|S−S1|+m(G− (S−S1)) < I(G), a contradiction. Hence the result. The converse
is obvious. ¤

Illustration 4.1.
v v v v

u1 u2 u3 u4

P4 :

S = {u1, u4} be non I-set of P4. |S|+ m(G−S) = 4 > I(P4) = 3. Remove the
edge u2u3. Then |S|+ m(G− S − u2u3) = 3 = I(G). Let S1 = S − {u1, u4}. Then
|S1|+ m((G− u2u3)− S1) = 0 + 2 = 2 < I(P4).

Corollary 4.2. bI(G) = 1 if and only if either there exists an I-set S sat-
isfying the condition of the proposition 4.8 or there exists a maximum cardinality
I-set satisfying the conditions of proposition 4.9.

Observation 4.2. If S1 is a non I-set of G with |S1| less than the order of a
maximum order I-set of G say S, then there exists a subset S2 of V (G) such that
|S2| = |S| and |S2|+ m(G− S2) > I(T ).

Proposition 4.10. Let G be a connected graph. Then bI(G) 6 I ′(G)− 1.

Proof. Since I ′(G) > ∆(G) + 1 and bI(G) 6 ∆(G),
we have bI(G) 6 ∆(G) 6 I ′(G)− 1. The bound is sharp as seen in P3. ¤

Proposition 4.11.

Let G and H be two graphs. Then bI(G + H) 6 max{bI(G), bI(H)}.
Proof. Clearly, I(G + H) = min{I(G) + |V (H)|, I(H) + |V (G)|}.

Case(i): I(G) + |V (H)| 6 I(H) + |V (G)|. Then I(G + H) = I(G) + |V (H)|. Let
E1 be a set of edges of cardinality bI(G) whose removal from G reduces I(G). Then
I(G + H − E1) 6 I(G − E1) + |V (H)| < I(G) + |V (H)|. Therefore, bI(G + H) 6
|E1| = bI(G).
Similarly, we can prove that if I(H) + |V (G)| 6 I(G) + |V (H)|, then bI(G + H) 6
bI(H). Therefore, bI(G + H) 6 max{bI(G), bI(H)}. ¤

Remark 4.7. The bound is sharp as seen in P3 + K4. I(P3) = 2, I(K4) = 4
and bI(P3) = 2; bI(K4) = 1. bI(P3 + K4) = max{bI(P3), bI(K4)} = 2.

Proposition 4.12. Let T be any tree. If T is I-excellent, then bI(T ) = 1.

Proof. Let T be an I-excellent graph. Let u be a pendent vertex of T and
let v be its support.
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Clearly, T − uv = (T − {u}) ∪ {u}. I(T − {u}) < I(T ) , since T is I-excellent and
hence u ∈ T . I(T − uv) = I(T − {u}). Therefore, I(T − uv) < I(T ).

Hence bI(T ) = 1. ¤

Remark 4.8. The converse is not true. That is, there exists non
I-excellent trees with bI(T ) = 1. For example, P7 is not I-excellent, but bI(P7) = 1.

Proposition 4.13. bI(K2 × Pn) = 2, for every n, n > 2.

Proof. Since bI(G) 6 ∆(G), bI(K2 × Pn) 6 3.
If n = dk+2

2 edk+3
2 e − 1, k = 1, 2, · · · , then bI(Pn) = 2 and the removal of those two

edges from Pn which reduces I(Pn) also reduces I(K2 × Pn). Therefore, bI(K2 ×
Pn) 6 2.
If n 6= dk+2

2 edk+3
2 e − 1, k = 1, 2, · · · , then bI(Pn) = 1 and the removal of one edge

from each of the two Pn-layers reduces I(K2×Pn). The removal of any single edge
from K2 × Pn does not reduce its integrity. Therefore, bI(K2 × Pn) > 2. Hence
bI(K2 × Pn) = 2. ¤

Proposition 4.14. bI(K2 × Cn) = 2, for every n, where n > 3.

Proof. Since bI(G) 6 ∆(G), bI(K2 × Cn) 6 3. Proceeding as in the proposi-
tion 4.13, we get that bI(K2 × Cn) = 2, for every n, n > 3. ¤

Theorem 4.3. Let G be any connected graph. If G is I-excellent , then bI(G) 6
δ(G).

Proof. Let G be an I-excellent graph. Let u be a vertex of degree δ(G). Since
G is I-excellent, u belongs to an I-set of G. Remove all the edges incident at u.
Let H be the resulting graph. Then I(H) < I(G).
Therefore, bI(G) 6 δ(G). ¤

Remark 4.9. The bound is sharp as seen in P4.

Proposition 4.15. Let G be a connected graph. Let S be an I-set of G such
that among all the I-sets of G, S contains a vertex u such that
|N(u) ∩ (G− S)| is minimum. Then bI(G) 6 |N(u) ∩ (G− S)|.

Proof. Let u satisfy the hypothesis. Remove all the edges from u to G − S.
Let H be the resulting graph.
I(H) 6 I(H − (S − {u})) + m(H − {u}) = I(G− S)− 1 + m(G− S) = I(G)− 1.
Therefore, bI(G) 6 |N(u) ∩ (G− S)|. ¤

Remark 4.10. The bound is sharp as seen in P5 and Dr,s.

Remark 4.11. Let G be a connected graph. Let S be an I-set of G such that
among all I-sets of G, S contains a vertex u such that number of edges from u to
the maximum components of G−S and to the components of G−S with cardinality
of m(G− S)− 1 is minimum.
Then bI(G) 6 t where t is the number of edges from u to the maximum components
of G−S and to the components of G−S with cardinality of m(G−S)−1 is minimum.
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Proof. The proof follows from the fact that the removal of such edges will
not affect the cardinality of the maximum order component of G− (S − {u}). ¤

Proposition 4.16. Let G be a connected graph and S be an I-set of G of
maximum cardinality . Then bI(G) 6 n− I(G) + m(G− S).

Proof. Let S be an I-set of G of maximum cardinality. Then m(G − S) =
I(G)−|S| is minimum. Let u ∈ S. The maximum number of edges from u to V −S
is |V −S|. The removal of these edges from u will result in a graph with less integrity
than I(G). Therefore, bI(G) 6 |V − S| = n− |S| = n− I(G) + m(G− S). ¤

Proposition 4.17. Let G and G be connected graph. Then bI(G) + bI(G) 6
|E(G)|+ ∆(G)− δ(G) and hence for a regular graph, bI(G) + bI(G) 6 |E(G)|.

Proof. bI(G) 6 ∆(G) and bI(G) 6 ∆(G).
Therefore, bI(G) 6 ∆(G) = n− δ(G)− 1.
Thus, bI(G) + bI(G) 6 ∆(G) + n− δ(G)− 1 6 |E(G)|+ ∆(G)− δ(G). ¤

Proposition 4.18. Let G+ be the corona of G.
Then I(G+) 6 I(G) + m(G − S) if G 6= Kn where S is an I-set of maximum
cardinality in G. The bound is sharp as seen in Pn.

Proof. Let S be an I-set of G of maximum cardinality. For any I-set of T of
G,
I(G+) 6 |T |+ 2m(G− T ) = I(G) + m(G− T ).
I(G)+m(G−S) = min

T⊂V (G)
{I(G)+m(G−T )}, since S is an I-set of G of maximum

cardinality. Therefore, I(G+) 6 I(G) + m(G− S). ¤
Remark 4.12. I(K+

n ) = n + 1.

Corollary 4.3. bI(G+) 6 bI(G) since for any removal of bI(G) edges in G,
I(G) becomes reduced and hence I(G+) also is reduced.

Proposition 4.19. Let Cn be the complement of the Cycle Cn, n > 5. Then
I(Cn) = n− 1.

Proof. Since Cn(n > 5) has girth at least 5, I(Cn) = n− 1 (since in theorem
2.1(c) of [3], it is proved that I(G) = n− 1 if and only if G has girth
at least 5). ¤

Corollary 4.4. For n > 5, bI(Cn) = 1.

Proof. Let V (Cn) = {u1, u2, · · · , un}. Then S = {u1, u2, · · · , un−2} is an
I-set of Cn and I(Cn) = n− 1 and bI(Cn) = 1, since the removal of the edge in the
maximum order component of Cn − S reduces the integrity. ¤

Proposition 4.20. Let Pn be the complement of Pn. Then I(Pn) = n− 1.

Proof. Since Pn (n > 4) does not contain 2K2 as an induced subgraph, by
theorem 2.7(b) of [3], it is proved that,
I(Pn) = α0(Pn) + 1= n− 2 + 1 = n− 1. ¤
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Proposition 4.21. If I(G) = n− 1, then bI(G) 6 2.

Proof. Let I(G) = n − 1. By theorem 2.7(b) of [3], 2K2 as not an induced
subgraph of G. Hence, I(G) = α0(G)+1. Therefore, α0(G) = n−2 and β0(G) = 2.
Let S be a minimum vertex cover of G. Then |V (G) − S| = 2. Let V (G − S) =
{v1, v2}. Since S is a dominating set, there exists v1, v2 such that v1 is adjacent to
u1 and v2 is adjacent to u2. If u1 6= u2, then remove the edge u1v1 from G. Let V1

be the resulting graph.
Then |S ∪ {u1}| + m(G − (S ∪ {u1})) = |S| − 1 + 1 = |S| = n − 2. Therefore,
I(G) 6 n− 2. Hence bI(T ) = 1. If u1 = u2, then remove the edges u1v1 and u2v2,
then the resulting graph G1 with I(G1) 6 n− 2.
Therefore, bI(G) = 2. ¤

Proposition 4.22. If I(G) = α0(G) + 1, then bI(G) 6 β0(G).

Proof. Let S be a minimum vertex cover of G. Then m(G−S) = 1. Therefore,
|S|+ m(G − S) = α0(G) + 1 = I(G). Therefore, S is an I-set of G. Let u be any
vertex in S. Then all the edges from u to V − S are removed. Let G1 be the
resulting graph. Then the number of edges removed is less than or equal to β0(G).
|S − {u}| + m(G − (S ∪ {u})) = |S| − 1 + 1 = |S| = α0(G) < I(G). Therefore,
bI(G) 6 β0(G). ¤
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