JOURNAL OF INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN 1840-4359 Vol. 1 (2011), 37-51

Former

Bulletin of Society of Mathematicians Banja Luka ISSN 0354-5792, ISSN 1986-521X (0)

On pairwise θ -generalized closed sets

$\mathbf{F}.\mathbf{H}.\mathbf{K}\mathbf{h}\mathbf{e}\mathbf{d}\mathbf{r}^1$ and $\mathbf{H}.\mathbf{S}.\mathbf{A}\mathbf{l}\text{-}\mathbf{S}\mathbf{a}\mathbf{a}\mathbf{d}\mathbf{i}^2$

Abstract

The aim of this paper is to introduce a new notion of a pairwise generalized closed set called a pairwise θ -generalized closed set and study its fundamental basic properties. Furthermore, we introduced the concept of pairwise generalized Λ -sets which is extended to pairwise θ -generalized Λ -sets. Also we study some of their properties by using ij- θ -closure operator.

AMS Mathematics Subject Classification (2010): 54A10, 54D10, 54E55 Key words and phrases: ij- θ -open set, ij- θ -generalized closed set, ij- θ closure, generalized Λ_{ij} -set, pairwise $T_{1/2}$ -space

1 Introduction and preliminaries

N. Levine ([10]) in 1970 introduced the notions of generalized closed sets and $T_{1/2}$ topological spaces. Recently, Noiri ([12]) gave another new generalization of Levine's g-closed set by utilizing the θ -closure operator. The concept of θ -generalized closed sets was applied to the digital line ([3]). This notion was studied extensively in the last few years by many topologists. In 1986, Fukutake ([4]) generalized this notion to bitopological spaces and he defined a set A of a bitopological space X to be an *ij*-generalized closed set (briefly *ij*-g-closed) if j-cl(A) $\subset U$ whenever $A \subset U$ and U is τ_i -open in X. Also he defined strongly pairwise $T_{1/2}$ which is stronger than that pairwise $T_{1/2}$ of Reilly ([13]).

In this paper we generalized the notion of ij- θ -generalized closed set by utilizing the ij- θ -closure operator defined in [1] and we defined θ -generalized continuity in bitopological spaces. Many basic properties of this new concept will be studied as well as its relations to the other classes of ij-generalized closed sets.

Throughout this paper (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or briefly X and Y) denote bitopological spaces. For a subset A of X, i-cl(A) (resp. i-int(A)) denotes the

¹Department of Mathematics, Faculty of Sciences, University of Assiut, Assiut 715161, Egypt, E.mail : Khedrfathi@gmail.com

 $^{^2 \}rm Department of Mathematics, Faculty of Education for girls, P. O. Box 4281, Makkah, Saudi Arabia, E.mail : hasa112@hotmail.com$

closure of A and the interior of A respectively with respect to τ_i (or σ_i) for i = 1, 2. Also i, j = 1, 2 and $i \neq j$. A point x of A is said to be in the ij- θ -interior of A, denoted by ij-int $_{\theta}(A)$ ([1]) if there exists $U \in \tau_i$ such that $x \in U \subset j$ - $cl(U) \subset A$. A is said to be ij- θ -open ([1]) if A = ij-int $_{\theta}(A)$.

The complement of an ij- θ -open set is called an ij- θ -closed (i.e. A is ij- θ closed set if A = ij- $cl_{\theta}(A)$, where ij- $cl_{\theta}(A) = \{x \in X : j$ - $cl(U) \cap A \neq \phi, U \in \tau_i$ and $x \in U\}$. The family of all ij- θ -open sets forms a topology $\tau_i(\theta)$ such that $\tau_i(\theta) \subset \tau_i$, for i = 1, 2 ([15]).

A subset A of X is said to be ij-regular open (resp. ij-regular closed) ([16]) if A = i-int(j-cl(A)) (resp. A = i-cl(j-int(A))). A subset A of X is said to be ij-semi-open ([2]) (resp. ij- α -open ([7]), ij-semi-pre-open ([6]) if $A \subset j$ -cl(iint(A)) (resp. $A \subset i$ -int(j-cl(i-int(A))), $A \subset j$ -cl(i-int(j-cl(A)))).

The complement of an ij-semi-open (resp. ij- α -open, ij-semi-pre-open) is called ij-semi-closed (resp. ij- α -closed, ij-semi-pre-closed). The intersection of all ij-semi-closed (resp. ij- α -closed, ij-semi-pre-closed) is called ij-semi-closure (resp. ij- α -closure, ij-semi-pre-closure) of A and is denoted by ij-scl(A) (resp. ij-cl(A), ij-spcl(A)).

Now, we mention the following definitions and results:

Definition 1.1 ([9]) A subset A of a space X is called:

(1) An ij-semi-generalized closed set (briefly ij-sg-closed) if ji-scl $(A) \subset U$ whenever $A \subset U$ and U is ij-semi-open in X.

(2) An ij-generalized α -closed set (briefly ij-g α -closed) if ji- α cl(A) $\subset U$ whenever $A \subset U$ and U is ij- α -open in X.

(3) An ij-generalized semi-closed set (briefly ij-gs-closed) if ji-scl $(A) \subset U$ whenever $A \subset U$ and U is τ_i -open in X.

Definition 1.2 A bitopological space (X, τ_1, τ_2) is called:

(1) pairwise R_0 -space (briefly PR_0 -space) ([11]) if for each τ_i -open U and $x \in U, \tau_j$ -cl({x})U.

(2) pairwise R_1 -space (briefly PR_1 -space) ([14]) if and only if for each $x, y \in X$ such that $x \notin \tau_i$ -cl($\{y\}$), there is a τ_i -open set U and a τ_j -open set V such that $x \in U, y \in V$ and $U \cap V = \phi$.

(3) pairwise T_0 ([13]) (briefly PT_0 -space) if and only if for each $x, y \in X$ with $x \neq y$, there exists a τ_1 -open set containing x but not y or a τ_2 -open set containing y but not x.

(4) pairwise $T_{1/2}$ -space (briefly $PT_{1/2}$ -space) ([4]) if every ij-g-closed set is τ_j -closed.

(5) pairwise Hausdorff ([5]) if and only if for each $x, y \in X$ with $x \neq y$, there are a τ_i -open set U containing x and τ_j -open set V containing y such that $U \cap V = \phi$.

(6) pairwise regular ([5]) if for each $x \in X$ and each τ_i -closed F not containing x, there exist a τ_i -open set U and a τ_j -open set V such that $x \in U, F \subset V$ and $U \cap V = \phi$, equivalent for each τ_i -open set U and $x \in U$, there exists τ_i -open set V such that $x \in V \subset j$ -cl $(V) \subset U$.

(7) ij-extremely disconnected ([8]) if j-cl(U) is τ_i -open for every τ_i -open set U.

Definition 1.3 A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called:

(1) ij-g-continuous ([9]) if $f^{-1}(V)$ is ij-g-closed in X for every σ_j -closed set V of Y.

(2) ij-strongly θ -continuous [[1]] if for each $x \in X$ and each σ_i -open set V containing f(x), there exists a τ_i -open set U containing x such that $f(j\text{-}cl(U)) \subset V$. If f is 12-strongly θ -continuous and 21-strongly θ -continuous, then f is called pairwise strongly θ -continuous.

Lemma 1.1 ([6]) A subset A of a bitopological space X is ij-semi-pre-closed if and only if A = ij-spcl(A).

Lemma 1.2 ([15]) Let A and B be a subsets of a bitopological space (X, τ_1, τ_2) then:

 $(i) \ A \subset B \Rightarrow ij \cdot cl_{\theta}(A) \subset ij \cdot cl_{\theta}(B).$ $(ii) \ i \cdot cl(A) \subset ij \cdot cl_{\theta}(A).$ $(iii) \ A \in \tau_j \Rightarrow i \cdot cl(A) = ij \cdot cl_{\theta}(A).$ $(iv) \ ij \cdot cl_{\theta}(A) = \cap \{i \cdot cl(V) : A \subset V \in \tau_j\}.$

From Lemma 1.5 (iv), we note that $ij - cl_{\theta}(A)$ is a τ_i -closed set in X.

Lemma 1.3 ([4]) A bitopological space (X, τ_1, τ_2) is an P- $T_{1/2}$ -space if and only if for each $x \in X$, singleton $\{x\}$ is τ_j -open or τ_i -closed.

Theorem 1.1 A bitopological space (X, τ_1, τ_2) is be pairwise Hausdorff if and only if for each $x \in X$, ij- $cl_{\theta}(\{x\}) = \{x\}$.

Proof. Let (X, τ_1, τ_2) be pairwise Hausdorff. Since for every singleton set $\{x\} \subset ij\text{-}cl_{\theta}(\{x\})$, then we show that $ij\text{-}cl_{\theta}(\{x\}) \subset \{x\}$. Let $y \notin \{x\}$ then there exist a τ_j -open set U containing x and τ_i -open set V containing y such that $U \cap V = \phi$ and $U \cap \tau_j\text{-}cl(V) = \phi$. Hence $\{x\} \cap \tau_j\text{-}cl(V) = \phi$ and $y \notin ij\text{-}cl_{\theta}(\{x\})$. Thus $ij\text{-}cl_{\theta}(\{x\}) \subset \{x\}$.

Conversely, let $ij\text{-}cl_{\theta}(\{x\}) = \{x\}$ and $x, y \in X$ such that $x \neq y$. Then $y \notin ij\text{-}cl_{\theta}(\{x\})$ and hence there exists τ_i -open set V containing y such that $j\text{-}cl(V) \cap \{x\} = \phi$. Thus $\{x\} \subset X \setminus j\text{-}cl(V) = U$ and U is a τ_j -open set containing x such that $U \cap V = \phi$. Hence (X, τ_1, τ_2) be pairwise Hausdorff. \Box

Theorem 1.2 ([11]) A bitopological space (X, τ_1, τ_2) is pairwise R_0 if and only if each τ_j -closed F can be expressed as:

$$F = \cap \{U : F \subset U \quad and \quad Uis\tau_i \text{-}open\}$$

Lemma 1.4 For a function $f : X \to Y$, the following are equivalent:

(i) f is ij-strongly θ -continuous.

(ii) $f^{-1}(V)$ is ij- θ -open, for each σ_i -open set V of Y.

Proof. (i) \Rightarrow (ii) Let V be σ_i -open set of Y and $x \in f^{-1}(V)$. Then there exists a τ_i -open U containing x such that $f(j\text{-}cl(U)) \subset V$ and hence $x \in U \subset j\text{-}cl(U) \subset f^{-1}(V)$. This shows that $f^{-1}(V)$ is $ij\text{-}\theta$ -open.

(ii) \Rightarrow (i) Let V be an ij- θ -open set containing f(x). Then $x \in f^{-1}(V)$ and by (ii) there exists a τ_i -open set U containing x such that $x \in U \subset j$ - $cl(U) \subset f^{-1}(V)$. Thus f(j- $cl(U)) \subset V$ and hence f is ij-strongly θ -continuous. \Box

2 Basic properties of pairwise θ -generalized closed sets

Definition 2.1 A subset A of a space X is called:

(1) An ij- α -generalized closed set (briefly ij- αg -closed) if ji- $\alpha cl(A) \subset U$ whenever $A \subset U$ and U is τ_i -open in X.

(2) An ij-generalized semi-preclosed set (briefly ij-gsp-closed) if ji-spcl $(A) \subset U$ whenever $A \subset U$ and U is τ_i -open in X.

(3) An ij-regular generalized closed set (briefly ij-r-g-closed) if j-cl(A) $\subset U$ whenever $A \subset U$ and U is ij-regular open in X.

Definition 2.2 A subset A of a bitopological space (X, τ_1, τ_2) is called ij- θ -generalized closed (briefly ij- θ -g-closed) if ji- $cl_{\theta}(A) \subset U$ whenever $A \subset U$ and U is τ_i -open in X. If $A \subset X$ is 12- θ -g-closed and 21- θ -g-closed, then it said to be pairwise θ -generalized closed (briefly $P\theta$ -g-closed).

We denote the family of all ij- θ -generalized closed subsets of a space X by ij-TGC(X).

Theorem 2.1 Every ji- θ -closed set is ij- θ -g-closed.

Proof. Let $A \subset X$ be ji- θ -closed and $A \subset U$ such that $U \in \tau_i$, then ji- $cl_{\theta}(A) = A$. Thus ji- $cl_{\theta}(A) \subset U$. Thus A is ij- θ -g-closed. \Box

The following example shows that the converse of Theorem 2.3 is not true in general.

Example 2.4. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{c\}, \{a, c\}, X\}$. The set $A = \{a, c\}$ is 12- θ -g-closed, since the only τ_1 -open superset of A is X. But it is easy to see that A is not 21- θ -closed. In fact it is not even 21-semiclosed, since its complement is $\{b\}$ and τ_1 -int $(\{b\}) = \phi$.

Theorem 2.2 Let (X, τ_1, τ_2) be a bitopological space. Then:

- (i) Every ij- θ -g-closed set is ij-g-closed.
- (ii) Every ij- θ -g-closed set is ij- α g-closed.
- (iii) Every ij- θ -g-closed set is ij-gs-closed.
- (iv) Every ij- θ -g-closed set is ij-r-g-closed.

Proof. Let A be a subset of X. By Lemma 1.5, $j-cl(A) \subset ji-cl_{\theta}(A)$. Thus if U is τ_i -open and $A \subset U$, then $j-cl(A) \subset ji-cl_{\theta}(A) \subset U$. Hence A is ij-g-closed. The proof of the other cases is similar.

The next example shows that an $ij\text{-}g\text{-}\mathrm{closed}$ set, even a $j\text{-}\mathrm{closed}$ set, need not be always $ij\text{-}\theta\text{-}g\text{-}\mathrm{closed}$.

Example 2.6. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Let $A = \{c\}$, then A is τ_2 -closed and hence 12-g-closed. If $U = \{a, c\} \in \tau_1, 21\text{-}cl_{\theta}(A) = X \notin U$. Thus, A is not 12- θ -g-closed.

Theorem 2.3 Every ji-semi-pre-closed set is ij-gsp-closed.

Proof. It follows from the fact that a set $A \subset X$ is *ji*-semi-preclosed if and only if ji-spcl(A) = A, by Lemma 1.4.

Theorem 2.4 Every ij-gs-closed set is ij-gsp-closed.

Proof. Let A be ij-gs-closed. Since ij-spcl $(A) \subset ij$ -scl(A) for every subset A of X, then A is ij-gsp-closed.

The reverse in the theorems above is not always true. Next we give an example of an ij-gsp-closed set which is not ij-gs-closed.

Example 2.9. Let $X = \{a, b, c, d, e\}, \tau_1 = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$ and $\tau_2 = \{\phi, \{a, c, e\}, \{b, d\}, X\}$. Let $A = \{b, c\}$ and $U = \{a, b, c, d\}$. Then 21-spcl(A) = A, so A is 21-semi-preclosed. Thus by Theorem 2.7, A is 12-gsp-closed. On the other hand $A \subset U \in \tau_1$ and 21-scl(A) = X.

This shows that A is not 12-gs-closed.

The next example shows that the converse of Theorem 2.7 is not true.

Example 2.10. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, \{c\}, X\}$. Let $A = \{a, c\}$. Clearly, A is not 21-semi-preclosed. On the other hand, A is 12-gsp-closed (even 12-g-closed and 12-gs-closed), since the only open set containing A is X.

Theorem 2.5 Every *ij*-*g*-closed set is *ij*-*r*-*g*-closed.

Proof. It is follows from the fact that every *ij*-regular open set of X is τ_i -open.

From the above discussion and from the results in [9] we have the following diagram.

Figure 1:

Theorem 2.6 A space X is pairwise regular if and only if $ij-cl_{\theta}(A) = i-cl(A)$, for each a subset A of X.

Proof. Let (X, τ_1, τ_2) be a pairwise regular space. Since $i - cl(A) \subset ij - cl_{\theta}(A)$ we show that $ij - cl_{\theta}(A) \subset i - cl(A)$. Let $x \notin i - cl(A)$. Then there exists a τ_i -open set U and a τ_j -open set V such that $x \in U$, $A \subset V$ and $U \cap V = \phi$. Hence $j - cl(U) \cap A = \phi$ and $x \notin ij - cl_{\theta}(A)$. Thus $ij - cl_{\theta}(A) \subset i - cl(A)$.

Conversely, let $ij - cl_{\theta}(A) = i - cl(A)$ and F be a τ_i -closed set not containing x. Then $x \notin ij - cl_{\theta}(F)$ and hence there exists a τ_i -open set U containing x such that $j - cl(U) \cap F = \phi$. Thus, $F \subset X \setminus j - cl(U) = V$ and V is a τ_j -open set such that $U \cap V = \phi$. Hence, (X, τ_1, τ_2) is a pairwise regular space. \Box

Theorem 2.7 Let (X, τ_1, τ_2) be a pairwise regular space. Then for a subset A of X the following are equivalent:

(i) A is an ij- θ -g-closed set.

(*ii*) A is an *ij*-g-closed set.

Proof. (i) \Rightarrow (ii) is valid for every bitopological space X by Theorem 2.5.

(ii) \Rightarrow (i) since a bitopological space X is *ij*-regular if and only if for each set $A \subset X, ij\text{-}cl_{\theta}(A) = i\text{-}cl(A)$, Theorem 2.12. Thus if $A \subset U$, where A is *ij*-g-closed and U is τ_i -open then $ji\text{-}cl_{\theta}(A) = j\text{-}cl(A) \subset U$. Hence, A is $ij\text{-}\theta\text{-}g\text{-}closed$. *qed*

Lemma 2.1 If A and B are subsets of a space X, then :

(i) $ij - cl_{\theta}(A \cup B) = ij - cl_{\theta}(A) \cup ij - cl_{\theta}(B).$ (ii) $ij - cl_{\theta}(A \cap B) \subset ij - cl_{\theta}(A) \cap ij - cl_{\theta}(B).$

Proof. (i) First we prove that $ij\text{-}cl_{\theta}(A \cup B) \subset ij\text{-}cl_{\theta}(A) \cup ij\text{-}cl_{\theta}(B)$ for every subsets A and B of X. Let $x \notin ij\text{-}cl_{\theta}(A) \cup ij\text{-}cl_{\theta}(B)$, then there exist τ_i -open sets U and V containing x such that $j\text{-}cl(U) \cap A = \phi$ and $j\text{-}cl(V) \cap B = \phi$. This implies $x \in U \cup V$. Since $j\text{-}cl(U \cup V) = j\text{-}cl(U) \cup j\text{-}cl(V)$ holds, then we have $j\text{-}cl(U \cup V) \cap (A \cup B) = \phi$. Hence $x \notin ij\text{-}cl_{\theta}(A \cup B)$. Making use of Lemma 1.5, we have $ij\text{-}cl_{\theta}(A) \cup ij\text{-}cl_{\theta}(B) \subset ij\text{-}cl_{\theta}(A \cup B)$. This completes the proof.

(ii) Let $x \notin ij\text{-}cl_{\theta}(A) \cap ij\text{-}cl_{\theta}(B)$. Then there exists a τ_i -open set U containing x such that either $j\text{-}cl(U) \cap A = \phi$ or $j\text{-}cl(U) \cap B = \phi$. In any case we obtain that $j\text{-}cl(U) \cap (A \cap B) = \phi$. Thus $x \notin ij\text{-}cl_{\theta}(A \cap B)$. \Box

Theorem 2.8 (i) A finite union of ij- θ -g-closed sets is always an ij- θ -g-closed set.

(ii) A countable union of ij- θ -g-closed sets need not be an ij- θ -g-closed set. (iii) A finite intersection of ij- θ -g-closed sets need not be an ij- θ -g-closed set.

Proof. (i) Let $A, B \subset X$ be $ij \cdot \theta \cdot g$ -closed sets. Let U be a τ_i -open subset of X such that $A \cup B \subset U$. By Lemma 2.14 (i), $ji \cdot cl_{\theta}(A \cup B) = ji \cdot cl_{\theta}(A) \cup ji \cdot cl_{\theta}(B) \subset U \cup U = U$, since A and B are $ij \cdot \theta \cdot g$ -closed. Hence $A \cup B$ is $ij \cdot \theta \cdot g$ -closed.

(ii) Let X be the real line and $\tau_1 = \tau_2$, the usual topology on X. Since X is pairwise regular, then by Theorem 2.12, every singleton in X is ij- θ -g-closed. Let $A = \bigcup_{i=2}^{\infty} \{1/i\}$. Clearly A is a countable union of ij- θ -g-closed sets but A is not ij- θ -g-closed, since $A \subset (0, 1)$ and $0 \in ij$ - $cl_{\theta}(A)$.

(iii) Let $X = \{a, b, c, d, e\}, \tau_1 = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$ and $\tau_2 = \{\phi, \{e\}, \{a, b, c\}, \{c, d, e\}, X\}$. Let $A = \{a, c, d\}$ and $B = \{b, c, e\}$. Clearly A and B are $12 \cdot \theta \cdot g \cdot c$ closed sets, since X is the only τ_1 -open superset of them. But $C = \{c\} = A \cap B$ is not $12 \cdot \theta \cdot g \cdot c$ closed, since $C \subset \{c\} \in \tau_1$ and $21 \cdot c \cdot l_{\theta}(C) = \{c, d\} \not\subset \{c\}$. \Box

Definition 2.3 A subset A of a space X whose τ_i -closure is τ_j -open is called *ij*-CO-set.

Theorem 2.9 If a subset A of a space X is an ij- θ -g-closed and ji-CO-set, then ji- $cl_{\theta}(A) = j$ -cl(A).

Proof. Clearly, $j \cdot cl(A) \subset ji \cdot cl_{\theta}(A)$. We show that $ji \cdot cl_{\theta}(A) \subset j \cdot cl(A)$. Since A is a ji-CO-set, then $j \cdot cl(A)$ is τ_i -open. Since A is a $ij \cdot \theta \cdot g$ -closed and $A \subset j \cdot cl(A)$, then $ji \cdot cl_{\theta}(A) \subset j \cdot cl(A)$. Thus $ji \cdot cl_{\theta}(A) = j \cdot cl(A)$.

A subset A of a space X which is both *i*-closed and *j*-open is called ij-clopen ([8]).

Theorem 2.10 For a subset A of a bitopological space (X, τ_1, τ_2) the following conditions are equivalent:

(i) A is ji-clopen.

(ii) A is $ij-\theta$ -g-closed, ji-CO-set and ji-semi-closed.

Proof. (i) \Rightarrow (ii) : Since A is *j*-closed, then it is *ji*-semi-open. By Definition 2.16, A is *ji*-clopen, then A is *ji*-CO-set. Now, let $A \subset U$ where $U \in \tau_i$. By Lemma 1.5, $A \in \tau_i$ implies that $ji \cdot cl_{\theta}(A) = j \cdot cl(A) \subset U$. Hence A is $ij \cdot \theta \cdot g$ -closed.

(ii) \Rightarrow (i) By Theorem 2.17, $ji \cdot cl_{\theta}(A) = j \cdot cl(A) = i \cdot int(j \cdot cl(A)) \subset A$, since A is a ji-semi-closed, ji-CO-set. Then $A = ji \cdot cl_{\theta}(A)$, thus A is $ji \cdot \theta$ -closed and τ_j -closed. Since $A = i \cdot int(j \cdot cl(A))$, then A is ij-regular open and hence A is τ_i -open. Then A is ji-clopen.

3 Characterizations of $PT_{1/2}$ -spaces, PT_1 -spaces and PR_0 -spaces

Theorem 3.1 A bitopological space (X, τ_1, τ_2) is a P- $T_{1/2}$ -space if and only if every ij- θ -g-closed set is τ_j -closed.

Proof. Let $A \subset X$ be ij- θ -g-closed. By Theorem 2.5, A is ij-g-closed. Since X is a P- $T_{1/2}$ -space, then A is τ_j -closed.

Conversely, let $x \in X$. If $\{x\}$ is not τ_i -closed, then $B = X \setminus \{x\}$ is not τ_i open and thus X is the only τ_i -open superset of B. Hence B is ij- θ -g-closed. By assumption B is τ_j -closed or equivalently, $\{x\}$ is τ_j -open. Thus every singleton in X is τ_j -open or τ_i -closed. Hence by Lemma 1.6, X is a P- $T_{1/2}$ -space. \Box

Lemma 3.1 Let a subset A of a space X be $ij \cdot \theta \cdot g \cdot closed$. Then $ji \cdot cl_{\theta}(A) \setminus A$ does not contain a non-empty τ_i -closed set.

Proof. Let F be a τ_i -closed subset of $ji - cl_{\theta}(A) \setminus A$. Clearly, $A \subset X \setminus F$, where A is $ij - \theta - g$ -closed and $X \setminus F$ is τ_i -open. Thus $ji - cl_{\theta}(A) \subset X \setminus F$ or equivalently $F \subset X \setminus ji - cl_{\theta}(A)$. By assumption we have that $F \subset ji - cl_{\theta}(A)$, and thus $F \subset (X \setminus ji - cl_{\theta}(A)) \cap (ji - cl_{\theta}(A)) = \phi$. This shows that F is empty. \Box

Lemma 3.2 In any bitopological space (X, τ_1, τ_2) a singleton is ij- θ -open if and only if it is ji-clopen.

Proof. The assertion follows from the fact that a set A is ij- θ -open if and only if for each $x \in A$ there exist a τ_i -open set U and a τ_j -closed set V such that $x \in U \subset V \subset A$.

Theorem 3.2 A bitopological space (X, τ_1, τ_2) is a PT_1 -space if and only if every ij- θ -g-closed set is ji- θ -closed.

Proof. Let $A \subset X$ be ij- θ -g-closed and let $x \in ji$ - $cl_{\theta}(A)$. Since X is PT_1 , then $\{x\}$ is τ_i -closed and thus by Lemma 3.2 $x \notin ji$ - $cl_{\theta}(A) \setminus A$. Since $x \in ji$ - $cl_{\theta}(A)$, then $x \in A$. This shows that ji- $cl_{\theta}(A) \subset A$ or equivalently that A is ji- θ -closed.

Conversely, let $x \in X$ and assume that $\{x\}$ is τ_i -closed. Then $B = X \setminus \{x\}$ is not τ_i -open and clearly B is ij- θ -g-closed, since the only τ_i -open superset of B is X itself. By assumption B is ji- θ -closed and thus $\{x\}$ is ji- θ -open. By Lemma 3.3, $\{x\}$ is ij-clopen. Thus X is a PT_1 -space.

Definition 3.1 A subset A of a bitopological space (X, τ_1, τ_2) is called a Λ_i -set if $A = A^{\Lambda_i}$, where $A^{\Lambda_i} = \cap \{U : A \subset U, U \text{ is } \tau_i\text{-open}\}.$

Definition 3.2 A subset A of a bitopological space (X, τ_1, τ_2) is called a generalized Λ_{ij} -set (briefly g- Λ_{ij} -set) if $A^{\Lambda_i} \subset F$, whenever $A \subset F$ and F is τ_j -closed.

Definition 3.3 For a subset A of a bitopological space (X, τ_1, τ_2) we define $A_{\theta}^{\Lambda_{ij}}$ as follows $A_{\theta}^{\Lambda_{ij}} = \{x \in X : ij\text{-}cl_{\theta}\{x\} \cap A \neq \phi\}.$

Lemma 3.3 For any set $A \subset X$, $A \subset A^{\Lambda_i} \subset A^{\Lambda_{ij}}_{\theta} \subset ji\text{-}cl_{\theta}(A)$.

Proof. Let A be a subset of a space X. Obviously, $A \subset A^{\Lambda_i}$. Now, we prove $A^{\Lambda_i} \subset A^{\Lambda_i}_{\theta}$. Let $x \notin A^{\Lambda_i j}_{\theta}$. It follows that $ij - cl_{\theta}(\{x\}) \cap A = \phi$ and $A \subset X \setminus ij - cl_{\theta}(\{x\}) = U$. Since $ij - cl_{\theta}(\{x\})$ is $ij - \theta$ -closed, then U is $ij - \theta$ -open. Hence there exists a τ_i -open set U containing A but not x, then $x \notin A^{\Lambda_i}$. Thus $A^{\Lambda_i} \subset A^{\Lambda_i}_{\theta}$.

Now we prove that $A_{\theta}^{\Lambda_{ij}} \subset ji - cl_{\theta}(A)$. Suppose that $x \notin ji - cl_{\theta}(A)$. Then there exists a τ_j -open set U such that $x \in U$ and $i - cl(U) \cap A = \phi$. Since U is τ_j -open, it follows by Lemma 1.5 $i - cl(U) = ij - cl_{\theta}(U)$. So $ij - cl_{\theta}(U) \cap A = \phi$. Thus, $ij - cl_{\theta}(\{x\}) \cap A = \phi$ and $x \notin A_{\theta}^{\Lambda_{ij}}$. Hence, $A_{\theta}^{\Lambda_{ij}} \subset ji - cl_{\theta}(A)$. \Box **Theorem 3.3** A bitopological space (X, τ_1, τ_2) is a PT_1 -space if and only if every subset in X is a Λ_i -set.

Proof. Let U be a subset of a PT_1 -space. Suppose that there exists a point $x \in X$ such that $x \notin U$. Then $X \setminus \{x\}$ is a τ_i -open set containing U. Thus $x \notin U^{\Lambda_i}$ and $U^{\Lambda_i} \subseteq U$. Since $U \subset U^{\Lambda_i}$, then $U = U^{\Lambda_i}$. Hence, U is Λ_i -set.

Conversely, assume that every set in X is a Λ_i -set. Let a and b be two different points, then $\{a\}^{\Lambda_i} \cap \{b\}^{\Lambda_j} = \phi$. Since $a \in \{a\}^{\Lambda_i}$, then $a \in \{b\}^{\Lambda_j}$ and so there exists a τ_j -open *nbd*. of b which does not contain a. On the other hand, since $b \in \{b\}^{\Lambda_j}$ then $b \notin \{a\}^{\Lambda_i}$ and so there exists a τ_i -open *nbd* of a which does not contain b. Thus X is a PT_1 -space.

Theorem 3.4 Every ij- θ -closed set is a Λ_i -set.

Proof. Let $A \subset X$ be ij- θ -closed. Then A = ij- $cl_{\theta}(A)$. Thus, by Lemma 3.8, $A^{\Lambda_j} \subset ij$ - $cl_{\theta}(A) = A$ and hence $A = A^{\Lambda_j}$. Thus, A is a Λ_j -set. \Box

The following example shows that a Λ_j -set need not be ij- θ -closed.

Example 3.11. Let R be the set of real numbers and a space X = R, τ_1 be the co-finite topology on R, i.e., $\tau_1 = \{U \subseteq X : X \setminus U \text{ is finite}\} \cup \{\phi\}$ and τ_2 be the usual topology on R. Then (R, τ_1, τ_2) is a PT_1 -space and any singleton of R is a Λ_j -set, but none of the singletons is ij- θ -closed.

Lemma 3.4 If a subset A of a bitopological space (X, τ_1, τ_2) is ij-g-closed, then j-cl $(A) \subset A^{\Lambda_i}$.

Proof. Let $A \subset X$ be ij-g-closed and $x \notin A^{\Lambda_i}$. Then there exists a τ_i open set U of X containing x such that $x \notin U$ and $A \subset U$. By hypothesis, j-cl $(A) \subset U$. Hence, $x \notin j$ -cl(A) and j-cl $(A) \subset A^{\Lambda_i}$.

Theorem 3.5 Every *ij*-g-closed, Λ_i -set is τ_j -closed.

Proof. Let $A \subset X$ be an *ij-g*-closed, Λ_i -set. Since A is *ij-g*-closed, then by Lemma 3.12, j- $cl(A) \subset A^{\Lambda_i}$. Moreover, since A is a Λ_i -set, then j- $cl(A) \subset A^{\Lambda_i} = A$. Thus, A is τ_j -closed.

Definition 3.4 A subset A of (X, τ_1, τ_2) is called θ -generalized- Λ_{ij} -set (briefly θ -g- Λ_{ij} -set) if $A_{\theta}^{\Lambda_{ij}} \subset F$ whenever $A \subset F$ and F is τ_j -closed in X.

Theorem 3.6 Every θ -g- Λ_{ij} -set is a g- Λ_{ij} -set.

Proof. Let $A \subset X$ be a θ -g- Λ_{ij} -set and let $A \subset F$, where F is τ_j -closed. By assumption $A_{\theta}^{\Lambda_{ij}} \subset F$ and by Lemma 3.8 $A^{\Lambda_i} \subset A_{\theta}^{\Lambda_{ij}} \subset F$. This shows that A is a g- Λ_{ij} -set.

Remark 3.16. A g- Λ_{ij} -set need not θ -g- Λ_{ij} -set. In Example 3.11, every singleton is a Λ_i -set and hence a g- Λ_{ij} -set but none of the singletons is a θ -g- Λ_{ij} -set, since the ji- θ -closure of every singleton is X.

Theorem 3.7 A bitopological space (X, τ_1, τ_2) is a PR_0 -space if and only if every singleton of X is a g- Λ_{ij} -set.

Proof. In Theorem 1.8 shows that a space is PR_0 if and only if for each τ_j closed set $A, A = A^{\Lambda_i}$. Thus if X is PR_0 , then for each singleton $\{x\}$ and each τ_j -closed F containing x, we have $\{x\} \subset \{x\}^{\Lambda_i} \subset F^{\Lambda_i} = F$. So, $\{x\}$ is a $g - \Lambda_{ij}$ -set.

Conversely, assume that $F \subset X$ is τ_j -closed. For each $x \in F$ by assumption $\{x\}^{\Lambda_i} \subset F$. Thus $F^{\Lambda_i} = \bigcup_{x \in F} \{x\}^{\Lambda_i} \subset F$. This shows that $F = F^{\Lambda_i}$ and X is a PR_0 -space.

Theorem 3.8 Let (X, τ_1, τ_2) be a pairwise Hausdorff space. Then every subset of X is a θ -g- Λ_{ij} -set.

Proof. By Theorem 1.7, every singleton in X is ij- θ -closed. Let $A \subset X$, it is easily observed that $A = A_{\theta}^{\Lambda_{ij}}$. Since, if $x \in A_{\theta}^{\Lambda_{ij}}$, then ij- $cl_{\theta}(\{x\} \cap A \neq \phi \text{ and } \{x\} \cap A \neq \phi \text{ or } x \in A$. Hence A is a θ -g- Λ_{ij} -set.

Theorem 3.9 Let (X, τ_1, τ_2) be a bitopological space. Then the following statements are equivalent :

- (i) X is a pairwise R_1 -space.
- (ii) For each $x \in X$, i-cl($\{x\}$) = ij-cl_{θ}($\{x\}$).
- (iii) For each j-compact $A \subset X$, i-cl(A) = ij-cl $_{\theta}(A)$.

Proof. (i) \Rightarrow (iii): Generally $i\text{-}cl(A) \subset ij\text{-}cl_{\theta}(A)$. Now, let $x \notin i\text{-}cl(A)$. For each $y \in A$, $x \notin i\text{-}cl(\{y\})$ and so there exists a τ_i -open set U_y and a τ_j -open set V_y such that $x \in U_y, y \in V_y$ and $U_y \cap V_y = \phi$. Then $\{V_y : y \in A\}$ is a j-open cover of A. Since A is τ_j -compact, there exists a finite subset A_0 of A such that $A \subset \cup \{V_y : y \in A_0\}$. Put $V = \cup \{V_y : y \in A_0\}$ and $U = \cap \{U_y : y \in A_0\}$. Then V is a τ_j -open set, U is a τ_i -open set, $A \subset V, x \in U$ and $U \cap V = \phi$. Thus $j\text{-}cl(U) \cap V = \phi$ and so $j\text{-}cl(U) \cap A = \phi$. This shows that $x \notin ij\text{-}cl_{\theta}(A)$ and therefore $ij\text{-}cl_{\theta}(A) \subset i\text{-}cl(A)$.

(iii) \Rightarrow (ii): The proof is obvious, since $\{x\}$ is τ_j -compact.

(ii) \Rightarrow (i): Let $x \notin i$ - $cl(\{y\})$, by (ii) $x \notin ij$ - $cl_{\theta}(\{y\})$. Then there exists a τ_i -open set U such that $x \in U$ and j- $cl(U) \cap \{y\} = \phi$. Then $X \setminus j$ -cl(U) is a j-open set containing y. Also, $U \cap X \setminus j$ - $cl(U) = \phi$. This shows that X is a pairwise R_1 -space.

4 On $ij-\theta$ -g-continuous and $ij-\theta$ -g-irresolute functions

Definition 4.1 A function $f : (X, \tau_1, \tau_2) \rightarrow (y, \sigma_1, \sigma_2)$ is called is called:

(1) ij- θ -g-continuous if $f^{-1}(V)$ is ij- θ -g-closed in X for every σ_j -closed set V of Y.

(2) ij- θ -g-irresolute if $f^{-1}(V)$ is ij- θ -g-closed in X for every ij- θ -g-closed set V of Y.

Theorem 4.1 If a function $f : X \to Y$ is ji-strongly θ -continuous, then f is ij- θ -g-continuous.

Proof. Let V be a σ_j -closed set of Y. Since f is *ji*-strongly θ -continuous, then by Lemma 1.9, $f^{-1}(V)$ is *ji*- θ -closed. By Theorem 2.3, $f^{-1}(V)$ is *ij*- θ -*g*-closed and hence f is *ij*- θ -*g*-continuous.

The following example shows that an ij- θ -g-continuous function need not be ji-strongly θ -continuous, not even ji-semi-continuous.

Example 4.3 Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, \{a, b\}, X\}, \tau_2 = \{\phi, \{a\}, \{a, c\}, X\}, \sigma_1 = \{\phi, \{b\}, \{a, b\}, Y\}$ and $\sigma_2 = \{\phi, \{b\}, Y\}$. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity function. Clearly f is 12- θ -g-continuous but f is not 21-strongly θ -continuous, not even 21-semi-continuous.

Theorem 4.2 Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be ij- θ -g-continuous. Then f is ij-g-continuous.

Proof. Let V be a σ_j -closed set of Y. Then $f^{-1}(V)$ is ij- θ -g-closed in X. By Theorem 2.5, every ij- θ -g-closed set is ij-g-closed. Then $f^{-1}(V)$ is ij-g-closed in X. Thus f is ij-g-continuous.

The converse of the above theorem is not true in general and this can easily be seen from the following example.

Example 4.5. Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}, \tau_2 = \{\phi, \{c\}, \{a, b\}, X\}, \sigma_1 = \{\phi, \{a, b\}, Y\}$ and $\sigma_2 = \{\phi, \{c\}, Y\}$. Let $f : (X, \tau_1, \tau_2) \to (X, \sigma_1, \sigma_2)$ be the identity function. Clearly f is 2-continuous and hence 12-g-continuous but $A = \{c\}$ is not 12- θ -g-closed set in (X, τ_1, τ_2) and hence f is not 12- θ -g-continuous.

Example 4.3 and Example 4.5 also, show that *i*-continuity and ij- θ -g-continuity are independent concepts. Thus we have the following implications and none of them is reversible:

Figure 2:

Theorem 4.3 Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g : (Y, \sigma_1, \sigma_2) \to (Z, v_1, v_2)$ be two functions. Then:

(i) If g is j-continuous and f is $ij-\theta$ -g-continuous, then $g \circ f$ is $ij-\theta$ -g-continuous. (ii) If g is $ij-\theta$ -g-irresolute and f is $ij-\theta$ -g-irresolute, then $g \circ f$ is $ij-\theta$ -g-irresolute.

(iii) If g is $ij-\theta$ -g-continuous and f is $ij-\theta$ -g-irresolute, then $g \circ f$ is $ij-\theta$ -g-continuous.

(iv) Let (Y, σ_1, σ_2) be a pairwise regular space, g is ij-g-continuous and f is ij- θ -g-irresolute. Then $g \circ f$ is ij- θ -g-continuous.

Proof.

(i) Let W be a v_j -closed set of Z. Since g is j-continuous, then $g^{-1}(W)$ is σ_j -closed set of Y. Moreover, f is ij- θ -g-continuous, then $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$ is ij- θ -g-closed set of X. Hence $g \circ f$ is ij- θ -g- continuous.

(ii) Let W be an ij- θ -g-closed set of Z. Since g is ij- θ -g-irresolute, then $g^{-1}(W)$ is ij- θ -g-closed set of Y. Since, f is ij- θ -g-irresolute, then $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$ is ij- θ -g-closed set of X. Hence $g \circ f$ is ij- θ -g-irresolute.

(iii) Let W be a v_j -closed set of Z. Since g is ij- θ -g-continuous, then $g^{-1}(W)$ is ij- θ -g-closed set of Y. Moreover, f is ij- θ -g-irresolute, then $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$ is ij- θ -g-closed set of X. Hence $g \circ f$ is ij- θ -g-continuous.

(iv) Let W be a v_j -closed set of Z. Since g is ij-g-continuous, then $g^{-1}(W)$ is ij-g-closed set of Y. Moreover, Y is pairwise regular, by Theorem 2.13, $g^{-1}(W)$ is ij- θ -g-closed and hence f ij- θ -g-irresolute, so $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$ is ij- θ -g-closed set of X. Thus $g \circ f$ is ij- θ -g-continuous.

The following example shows that in general, the composition of two ij- θ -g-continuous functions is not ij- θ -g-continuous.

Example 4.7. Let f be the function in Example 4.3. Let $v_1 = v_2 = \{\phi, \{c\}, X\}$. Let $g : (X, \sigma_1, \sigma_2) \to (X, v_1, v_2)$ be the identity function. It is easily observed that g is also 12- θ -g-continuous. But the composition function $g \circ f : (X, \tau_1, \tau_2) \to (X, v_1, v_2)$ is not 12- θ -g-continuous, since $\{a, b\} \notin 12$ - $TGC(X, \tau_1, \tau_2)$.

Theorem 4.4 If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is bijective, *i*-open and *ij*- θ -*g*-continuous, then f is ij- θ -*g*-irresolute.

Proof. Let V be ij- θ -g-closed set of Y and let $f^{-1}(V) \subset U$, where U be τ_i open set. Clearly $V \subset f(U)$. Since $f(U) \in \sigma_i$ and since V is ij- θ -g-closed set
in Y, then ji- $cl_{\theta}(V) \subset f(U)$ and thus $f^{-1}(ji$ - $cl_{\theta}(V)) \subset U$. Since f is ij- θ -gcontinuous and since ji- $cl_{\theta}(V)$ is σ_j -closed in Y, then ji- $cl_{\theta}(f^{-1}(ji$ - $cl_{\theta}(V))) \subset U$ and hence ji- $cl_{\theta}(f^{-1}(V)) \subset U$. Therefore, $f^{-1}(V)$ is ij- θ -g-closed of X. Hence f is ij- θ -g-irresolute.

Definition 4.2 A subset A of bitopological space (X, τ_1, τ_2) is called ij- θ -generalized open (briefly ij- θ -g-open) if its complement $X \setminus A$ is ij- θ -g-closed in (X, τ_1, τ_2) .

Theorem 4.5 (i) A subset A of (X, τ_1, τ_2) is ij- θ -g-open if and only if $F \subset ji$ int_{θ}(A), whenever $F \subset A$ and F is τ_i -closed in X.

(ii) If A is ij- θ -g-open in (X, τ_1, τ_2) and B is ij- θ -g-open in (Y, σ_1, σ_2) , then $A \times B$ is ij- θ -g-open in the product space $(X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2)$.

Proof. (i) Let $F \subset A$ and F be τ_i -closed in (X, τ_1, τ_2) . Since $X \setminus A$ is ij- θ -g-closed and $X \setminus F$ is a τ_i -open set containing $X \setminus A$, we have ji- $cl_{\theta}(X \setminus A) = X \setminus ji$ -int $_{\theta}(A) \subset X \setminus F$. Therefore, $F \subset ji$ -int $_{\theta}(A)$.

Conversely, let U be a τ_i -open set of (X, τ_1, τ_2) such that $X \setminus A \subset U$. Then $X \setminus U$ is τ_i -closed and $X \setminus U \subset A$. Using assumption, $X \setminus U \subset ji$ -int_{θ}(A) and hence ji- $cl_{\theta}(X \setminus A) \subset U$. Thus A is ij- θ -g-open.

(ii) Let F be an *i*-closed subset of $(X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2)$ such that $F \subset A \times B$, for each $(x, y) \in F, \tau_i \text{-}cl(\{x\}) \times \sigma_i \text{-}cl(\{y\}) \subset i \text{-}cl(F) = F \subset A \times B$. Then the two closed sets $\tau_i \text{-}cl(\{x\})$ and $\sigma_i \text{-}cl(\{y\})$ are contained in A and B respectively. By assumption, $\tau_i \text{-}cl(\{x\}) \subset ji \text{-}int_{\theta}(A)$ and $\sigma_i \text{-}cl(\{y\}) \subset ij \text{-}int_{\theta}(B)$ hold. This implies that for each $(x, y) \in F(x, y) \in ji \text{-}int_{\theta}(A) \times ji \text{-}int_{\theta}(B) \subset ji \text{-}int_{\theta}(A \times B)$ and hence $F \subset ji \text{-}int_{\theta}(A \times B)$. By (i) it is shown that $A \times B$ is $ij \text{-}\theta\text{-}g\text{-}open$. \Box

Theorem 4.6 The projection $p : (X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2) \to (X, \tau_1, \tau_2)$ is an $ij \cdot \theta \cdot g$ -irresolute map.

Proof. By Definition 4.9 and Theorem 4.10(ii), for an ij- θ -g-closed set F of $(X, \tau_1, \tau_2), p^{-1}(X \setminus F) = (X \setminus F) \times Y$ is ij- θ -g-open in $(X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2)$. Therefore, $p^{-1}(F) = F \times Y = X \times Y \setminus (p^{-1}(X \setminus F))$ is ij- θ -g-closed. \Box

References

- G. K. Banerjee, On pairwise almost strongly θ-continuous mappings, Bull. Cal. Math. Soc. 74 (1987), 195-206.
- [2] S. Bose, Semi open sets, semi continuity and semi open mappings in bitopological spaces, Bull. Cal. Math. Soc., 73 (1981), 237-246.
- [3] J. Dontchev and H. Maki, Groups of θ-generalized homeomorphisms and the digital line, Topology and its Applications, 95(1999),113-128.
- [4] T. Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 35(1986), 19-28.
- [5] J. C. Kelly, *Bitopological spaces*, Proc. London Math. Soc., 3 (13) (1963) ,71-89.
- [6] F. H. Khedr and S. M. AL-Areefi, Precontinuity and semi-precontinuity in bitopological spaces, Indian J. Pure Appl. Math., 23 (9) (1992), 625-633.
- [7] F. H. Khedr, Cα-Continuity in bitopological spaces, The Arabian J. for Sci. and Engin., 17(1)(1992), 85-89.
- [8] F. H. Khedr and T. Noiri, s-Closedness in bitopological spaces, J. Egyptian Math. Soc. Vol. 15(1)(2007) 79-87.
- [9] F. H. Khedr and H. S. Al-Saadi, On pairwise semi-generalized closed sets, JKAU, Sci., Vol. 21 No. 2,(2009), 269-295.
- [10] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [11] D. N. Misra and K. K. Dube, *Pairwise R₀-space*, Anu. de la Soci. Sci. de Brux., T. 87, I, (1973), 3-15.
- [12] T. Noiri, Generalized θ-closed sets of almost paracompact spaces, Tour. of Math. & Comp. Sci. Math. Ser., 9(1996), 157-161.
- [13] I. L. Reilly, On bitopological separation properties, Nanta Math., 2(1972), 14-25.
- [14] I. L. Reilly, On essentially pairwise Hausdorff spaces, Rend. Circ. Mat. Palermo, Ser. II, Txxv (1976), 47-52.
- [15] S. K. Sen, J. N. Nanai and M. N. Mukherjee, On bitopological QHC-spaces, Indian J. Pure Appl. Math. 27 (3) (1996), 245-255.
- [16] A. S. Singal and S. P. Arya, On pairwise almost regular spaces, Glasnik Mat., 6(26)(1971), 335-343.

Received by the editors February 14, 2011