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INTEGRAL REPRESENTATIONS OF THE PELL AND
PELL-LUCAS NUMBERS

Ahmet ipek

ABSTRACT. We present integral representations of Pell and Pell-Lucas num-
bers for the first time in this paper. In this note, we first give new integral
representations of the Pell numbers Py, and the Pell-Lucas numbers Qg,, and
then using integral representations of the Pell numbers Py,, and the Pell-Lucas
numbers Qp,, we give integral representations of the Pell numbers Pgy 4,
and the Pell-Lucas numbers Qppyr, where n € Zyo = {0,1,2,...} is a non-
negative integer, k € Zso = {1,2,3,...} is an arbitrary but fixed positive
integer, while r € Z3( is an arbitrary but fixed non-negative integer.

1. Introduction and a simple review of recent developments

The integral representations of the special numbers that are obtained from
different counting sequences are used as a tool in a large number of studies. This
fact indicates the importance of obtaining the integral representations of different
special numbers.

There are many papers devoted to the study of the integral representations
of some special numbers. These integral representations of special numbers have
attracted much attention. The integral representations of special numbers found
in the literature are proved using standard or advanced mathematical techniques
from the integral calculus.

We will now give a brief overview of the most recent developments of the integral
representations related to the special numbers that are obtained from different
counting sequences.

2020 Mathematics Subject Classification. Primary 11B39; Secondary 11R33.
Key words and phrases. Integral representation, Pell number, Pell-Lucas number.
Communicated by Dusko Bogdanic.

109



110 IPEK

Most of the works in the literature deal with the integral representations related
to the Catalan numbers.
Recall from [12] and [15] that the Catalan numbers C,, are defined by

1 2n
Cn_n—i—l( n ), n=0,1,2,....

Dana-Picard [3] showed that a Catalan number can be defined in many different
ways by the properties of a combinatorial system. Also, in that paper, Dana-Picard
presented the integral representations for these Catalan numbers.

Dana-Picard and Zeitoun [4] computed closed forms for two multiparameter
families of definite integrals. They obtained combinatorial formulas.

Dana-Picard [5] derived a combinatorial identity and obtained two integral
representations of the Catalan numbers.

Dana-Picard [6] obtained integral identities and new integral representations
of the Catalan numbers by searching for closed forms of an integral depending on
a parameter.

Using the Wallis formula and a non-straightforward recurrence formula, Dana-
Picard and Zeitoun [7] gave a sequence of improper integrals for which a closed
formula can be computed. This gives a new integral representation for the Catalan
numbers.

Penson and Sixdeniers [17] established an integral representation for the Cata-
lan numbers by means of the Mellin transform.

Recall from [1] that the Fibonacci numbers F,,, n = 0,1,2,..., are defined
by Fo = 0,F1 =1 and

Fn+2:Fn+l+Fn, n=20,1,2,...
and Lucas numbers L,, n=20,1,2,..., are defined by Lo =2,L; =1 and
Ln+2:Ln+1+Ln, n:(),].,?,....

Glasser and Zhou [11] introduced an integral representation for the Fibonacci
numbers. Stewart [18] gave integral representations for the Fibonacci and Lucas
numbers.

Recall from [14] that the Motzkin numbers M,,, n =0,1,2,..., are defined
by

[n/2] n
M, =Y ( ok )ck, n=0,1,2,....
k=0

Mccalla and Nkwanta [13] derived integral representations of Motzkin numbers.

Recall from [16] that the Pell numbers P,, n = 0,1,2,..., are defined by
PO :07P1 =1 and

Poio=2P,1+P,, n=0,1,2,...

and the formula of the general term is given by

1 n n
(1.1) Pn:ﬁ[(l—l—\/?) _(1_@]
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Recall from [16] that the Pell-Lucas numbers Q,,, n =0,1,2,..., are defined
by Qo = 2,01 =2 and

Qn+2 :2Qn+l+Qna n207172a"'
and the formula of the general term is given by
(1.2) Qn=(1+V2)"+(1-V2)"

We refer the reader to Koshy’s (2014) book, which provides an interesting historical
overview of the origins of Pell and Pell-Lucas numbers, for any remaining undefined
terms related to Pell and Pell-Lucas numbers.

The Pell numbers P, and the Pell-Lucas numbers @,, are frequently employed
in the practical applications and scientific investigation fields. For information on
new developments of these kinds of numbers, please refer to [2], [8], [9], [10] and
closely related references therein.

The purpose of this note is to present a new integral representation of Pell
numbers Py, and Pell-Lucas numbers Q,,, followed by the construction of integral
representations of Pell numbers P4, and Pell-Lucas numbers Qg+, based on
integral representations of Pell numbers Py, and Pell-Lucas numbers Q,, where
n € Zzo = {0,1,2,...} is a non-negative integer, k¥ € Zso = {1,2,3,...} is an
arbitrary but fixed positive integer, while r € Z>¢ is an arbitrary but fixed non-
negative integer.

The following section presents several facts concerning Pell and Pell-Lucas num-
bers.

2. Preliminaries

We will now examine some of the key facts concerning Pell and Pell-Lucas
numbers in this section.
Let a = 14 /2. From (1.1), it follows that

(2.1) P, = % <a” - :12") ,

called Binet’s formula for the Pell numbers and from (1.2), it follows that

(=D"

a'l’L

(2.2) Qn =" +

)

called Binet’s formula for the Pell-Lucas numbers.
There are the following relations between these two types of numbers and «.

(1) From (2.1) and (2.2), we obtain that the connection among the Pell num-
bers, the Pell-Lucas numbers, and « is for n € Zx

g @n 2V2P,

(2.3) :
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(2) For the connection between the Pell numbers and the Pell-Lucas numbers,
straightforward computation yields from (2.1) and (2.2) for n € Zxg

o ) )
= (0‘2” + % + 204“(0(1}1)
24 ) 4(%)% (o S )

(3) For m,r € Zxg, from (2.1) and (2.2) we establish the Pell index addition
formulae by direct calculation

PQu+QPu =5 (o/’ - (‘O})) (w n :Qm)

(o) (-5

B 27\1/5 (‘Wm far D" EDT (—1)”’”)

am o’ aT+m

—

1
+ava (e art ar arm
1 _1\r+m
— 2 <ar+m _ ( 1) )
2\/5 artm
(2.5) = 2Pt
(4) For m,r € Zxo, from (2.1) and (2.2) we establish the Pell-Lucas index

addition formulae by direct calculation

QmQy + 8P, P, = (am n (—0[1)m> (ar N (—1)>

rim (G m<1>r<1>r+m>

m O[r

() (- 5) (-2
=™ 4 (=1)" Q™ 4 (=1) T (1)

4 aerr _ (_l)ramfr _ (_l)marfm 4 (_1)m+ra7mfr
-1 m+r
=92 (aerr + ( ) )

am+r
(2.6) = 2Qm4r-

3. Integral representations for the Pell Numbers Py, and the
Pell-Lucas Numbers Qy,

Our purpose in this section is to present integral representations for the Pell
numbers Py, and for the Pell-Lucas numbers Qp,, where n € Z>o = {0,1,2,...} is
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a non-negative integer and k € Z~o = {1,2,3,...} is an arbitrary but fixed positive
integer.
The following theorem gives an integral representation of the Pell numbers.

THEOREM 3.1. We have an integral representation of the Pell numbers Py, by
the integral

1

(3.1) P = Q—H/ (Qk + Qﬁka)nfl dz
21

forn € Zxo and arbitrary but fizved k € Z~g.

PROOF. Denote the integral to be found by I. We make the substitution
u=g(z) = Qr + 2V2Px

because its differential is du = 2v/2Pdz, which, apart from the factor 2v/2P;,
occurs in the integral. Then, we obtain dx = ﬁdu. Before substituting, deter-
mine the new upper and lower limits of integration. When x = —1, the new lower
limit is u = g(—1) and when = = 1, the new upper limit is u = g(1). Now, we can
substitute to obtain

1
P P n—1
T;nk[ — % / (Qk + 2\/§ka> dx
—1
P ) g(1)
NIy n—1
= u" " du
2" 22P, /
g(=1)
_ 1 n 1 n 9(1)
= ovazin ey
1 1

=555 (@ +2vara)’] |

1 Qr +2V2Pyx ik
=57 . B

(3.2) 1 [(Qk-ﬁ-Q\/ﬁPk)n_(Qk—?\/EPk)n]
) =37 5 s )
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From (2.3) and (2.4), direct calculation gives

1 2
o' Q, +2v2P,
_ 2 (Qn —2v2P,)
~ (Qn+2v2P,) (Qn — 2V2P,)
_ 2(Qn —2v2P,)
Q7 — 8P
2

= o (Qn - 2\/§Pn>

_ (_TI)L (Qn - zﬁpn) .

Hence, we have

(33) (_1)n — Qn - 2\/§Pn )

From (3.2) and (3.3), it follows that

nP, 1 " —R\"
)

_ L kn (_1)kn
- 2\/5 @ o akn

Thus, the proof of Theorem 3.1 is completed.

COROLLARY 3.1. We have an integral representation of the Pell numbers P,
by the integral

1\3\3

/1 1+:17\[

formn € Zxy.
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PROOF. If we write k = 1 in (3.1), then we obtain the integral representations
of Pell numbers P, as follows:
P, / 1
P, = % <Q1 n x2\/§P1) da
-1
1 1
n—
o | (2ra2v2) e
-1
1

g / (1 + :17\/5) ! dx.

-1

Thus, the proof of Corollary 3.1 is completed. O

The following corollary gives an integral representation of the Pell numbers
with even integer index.

COROLLARY 3.2. We have an integral representation of the Pell numbers Ps,
by the integral

1

/ (6 + x4ﬁ)n_1 dz.

-1

(3.4) Py, = on—T

formn € Zxy.

PROOF. If we set k = 2 in (3.1), then we get an integral representation of the
Pell numbers with even integer index by

1
P. n—1
Py, = sz / (Q2 + x2\/§P2> d
Z1

1

L/(G—&-mélx/i)n_l dz.

= 2n—1
-1

The proof of Corollary 3.2 is complete. (]

The following corollary gives an integral representation of the Pell numbers
with odd integer index..

COROLLARY 3.3. We have an integral representation of the Pell numbers Poy 1
by the integral

1
1 n—1
-1

forn € Zxy.
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PRrROOF. We first recall the obvious identity Poy, 40 = 2Ps,41+ Pay,. Then, from
this identity, it follows that

1
(3.6) Poypy1 = 3 (Pony2 — Pan) -

Using a reindexing of n +— n 4+ 1 in (3.4), from (3.4) and (3.6) straightforward
computation yields

1
Popy1 = 2(P2n+2 Pzn)

1 [n+

1

n
T 1/ 6+x4\f
-1 -1
1

/ (4n +6+(n+1) m4\/§) (6 + x4\/§)n_l dz

-1

= W
The proof of Corollary 3.3 is complete. O

The following corollary gives a thinly disguised form of Binet’s formula for Pj,,.

COROLLARY 3.4. The Pell numbers Py, can be represented by

ak

n
Pip = —= t"dt
NG /
1
(—a)F

forn € Zxq and arbitrary but fized k € Z~y.

Proor. Using the substitution ¢ = 2 (Qk + 2\[ka) in (3.1), we have dt =
2‘f+P’“dx and dr =
that when z = —1,

5 fP dt. To find the new limits of integration (3.1) we note

t=

l\J\»—t

(k—zfpk) -
and when =z =1,

(Qk + 2\[Pk) =

l\D\P—‘
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Therefore, from (3.1) we obtain

1
P n—1
Py = nan / (Qk +2\/§ka) dz
-1
7 2
nri n—1
= — 2t dt
2n / @0 2V/2P;,
=k
Otk
P 2 _
— n k2n—1 / (t)n ldlf
2n 2V2P;
ey
ak
n
= — "1t
2v/2 /
(—eF
The proof of Corollary 3.4 is complete. (]

The following theorem gives an integral representation of the Pell-Lucas num-
bers.

THEOREM 3.2. We have an integral representation of the Pell-Lucas numbers
Qrn by the integral

1

37 Qun = 2i / (@s + Pitn+ Da2v2) (Qu+ kazfg)"_l do
]

forn € Zxq and arbitrary but fived k € Zy.

PRrROOF. Let
J= / (Qk + Pi(n+ 1)3:2\[2) (Qk + kaZ\/iyhl dz.

To evaluate this integral we use the integration by parts. Let

u=Qr + Py(n +1)22v?2

and
n—1
dv = (Qk n ka2\/§) da.
Then,
du = Py(n +1)2v2dz
and

v = / (Qk + kaQ\/i)nil dx.
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To evaluate the integral that we have obtained, v = f (Qk + ka2\[) el dx, if we

let t = Qp + Pix2v/2, then dt = 2v/2P,dzx, so dx = dt Therefore,
= t" Lt
/ 2V2P;,
— 1 n
712\/»13]@
= + P, x2\f)
nQ\ka (Qk %
If we let

1
1 n—1
I=o / (Qk + P(n + 1)952\@> (Qk + Pkf?\@) dx
Z1
then we obtain

1
I= on [uv]ll — /vdu
- 2% {rﬂlﬂPk KQ’“ + Piln+ WW?) (Qk +ka2\/§>"}1_

1 n
—Pi(n+ 1)2ﬁm_/1 (Qk +Pk-9:2\/§) dx

(38) = nPk12\/§ <Q'“ i 5’“2\@) (Qu+ Peln + 1)2v2)

1 On — P2V2\
nszﬂ( k 2k > (Qkak(nJrl)Q\@)

1

_ntl / (Qk +ka2\/§)ndx

n2m
-1

From (3.1), we have that

2n+1

(3.9) Pk(n+1)m

1
_ / (Qk. " 2\/§ka)n da.

-1
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Hence, from (3.8) and (3.9) we get

. (Qk ha PkQﬁ) (Qk + Py(n + 1)2&)

- nP;CQ\/i 2
n
1 Qr — Pi2v2
- — Pu(n+1)2V2
nPy2v/2 ( 2 ) (Q’“ k( ) )
n+1 2ontl
- Prngk.

n2n (77, + 1) Py
By (2.3), (2.5) and (3.3), it follows that

1

[=——

nPkQ\/E

I S G Vi
nPk2\/§ akn

ok (Qk + P(n+ 1)2\@)

(Qk — Pu(n+ 1)2\/5)
- TBcPkTL+k

+ <ak" + (;12;”) (n+1)Py

= TBC
—2Ppn k)

1
Yy [QkPrrn, + (n + 1) PrQrn — 2Ppn+k)

1
— [nPrQpn + QkPrn + PrQrn — 2Pintk] -

.1
(3.10) pyeR

119

Here, if we remember the formula given in (2.5) and substitute k& for r and kn for

m in this formula, we see that the following equation is satisfied:

Qi Prn + PrQrn — 2Pinik = 0.

Hence, (3.10) gives us the result I = Q.. Consequently, the proof of the theorem

by obtaining the result given in (3.7) is completed.

O

COROLLARY 3.5. We have an integral representation of the Pell-Lucas numbers

Q@ by the integral
1
Qn = / (14 (+ Dav2) (1+ xx/i)nfl dz
-1

formn € Zxy.
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PROOF. As aresult of writing & = 1 at (3.7), we obtain integral representations
for Pell-Lucas numbers @Q,, in the following way:

1
Qn = / (Q1 + Pi(n+ 1):02\/5) (Q1 + P1x2\@>n_1 dx
1

L / (2 +2(n + 1)x\/§) (2 + 2:6\/5)%1 dx

- / (1 +(n+ 1)33\/5) (1 +x\/§)n_1dg;

The proof of Corollary 3.5 is completed. O

The following corollary gives an integral representation of the Pell-Lucas num-
bers with even integer index.

COROLLARY 3.6. We have an integral representation of the Pell-Lucas numbers
Qon by the integral

(3.11) Qon = 2% / (6 S+ 1)x\/§) (6 n 4x\/§) "
2

formn € Zxy.

PROOF. If we set k = 2 in (3.7), then we get an integral representation of the
even Pell-Lucas numbers by

1
Qo = 2% / (@2 + Pa(n + 1)22v3) (@2 + Pa2v2) "
y
= 2% / (6 +4(n + l)x\/i) (6 + 436\/5) " dx.
-1
The proof of Corollary 3.6 is complete. O

The following corollary gives an integral representation of the Pell-Luas num-
bers with even integer index.

COROLLARY 3.7. We have an integral representation of the Pell-Lucas numbers
Qan+1 by the integral

1
(3.12) Qons1 = 2% / (6 +8n+4(n+ 1)x\/§) (6 + 4x\/§>n_1 d
Z1

formn € Zxy.
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PROOF. Recalling that the identity in (80) takes the form of

2Qm+r = QmQr + 8PmP7'a

by substituting 2n for m and 1 for r, we get the following identity

2Qon+1 = Q2nQ1 + 8Pon Py
(3.13) — 2Qon + 8Psn.

Substituting the integral representations obtained for Q)o,, and Ps, in 3.13 results
in the following integral representation for Qap41:

Q2ny1 = Q2n + 4P,
1 i 1
= (6 +4(n + l)x\/i) (6 + 436\/5) dz
5
1

/ (6 + x4\/§>n_1 dz

—1

+4

n
on—1
- 21”/1 (6+8n+4(n+1)2v2) (6+4x\f2)n_1d:c.

]

Thus, the proof of Corollary 3.7 is completed. (]

The following corollary gives a thinly disguised form of Binet’s formula for Q.

COROLLARY 3.8. The Pell-Lucas numbers Qy, can be represented by

Oék

Qin =n / " dt +

1
(—a)k

2
(—a)*

forn € Zxo and arbitrary but fized k € Z~.

PROOF. The proof of Corollary 3.8 can be done similarly to the proof of Corol-
lary 3.4. (]

4. Integral representations for the Pell Numbers Py, ., and the
Pell-Lucas Numbers Q4

This section presents the integral representations of Pell numbers Py, and
Pell-Lucas numbers Q-+, derived from the integral representations of Pell num-
bers Py, and Pell-Lucas numbers Qj,, where n € Z>o = {0,1,2,...} is a non-
negative integer, k € Zsog = {1,2,3,...} is an arbitrary but fixed positive integer,
while r € Z>¢ is an arbitrary but fixed non-negative integer.
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THEOREM 4.1. Forn € Zx( and arbitrary but fivzed k € Z~o and r € Zxg, the
Pell numbers Pypy, can be represented by the integral

1

1
(4.1) Pentr = 5o / KnPk.Qr + P.Qu + PoPr(n + 1):1:2\/2)
21

X (Qk + 2\/§ka)n_1] dz.

PROOF. The Pell index addition formula
Per + Qrpm = 2Pm+7‘
given by (2.5) with m replaced with kn produces

2Pkn+r = Panr + Pern

When the integral representations of Py, and Q, given by (3.1) and (3.7) re-
spectively are substituted into the given index addition formula, the result follows
immediately:

2Pkn+r = Qrpkn + Pern
1

_ QT%/ (@ + 2\/§ka)n_l dz

1
1
+ PTzin / (@ + Peln+ 1)22v2) (@4 + kawi)n*l dz
21
1

= o (nPer + P.Qy + Py Pr(n + 1)x2\/§) (Qk n 2\/§P]€l‘)n71 i,

-1
and completes the proof. O
REMARK 4.1. It is possible to obtain integral representations for P,, Ps,, and

Py, 11 by substituting (1,0), (2,0), and (2, 1) for (k,r) in the integral representation
at (4.1) given by Theorem 4.1.

THEOREM 4.2. Forn € Zx and arbitrary but fivzed k € Z~o and r € Zxg, the
Pell-Lucas numbers Qppn+, can be represented by the integral

2n+1

1
(4.2) Qkngr = ! / [<8nPkPr + QrQr + PQr(n+ 1)1”2\/5)
]

X (Qk + ka2\/§)n_l} dx.

PRrOOF. The Pell-Lucas index addition formula
QmQr + SPmPr = 2Qm+r
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given by (1.6) with m replaced with kn produces

QinQr + 8P Pr = 2Qin 11

When the integral representations of Py, and Qg given by (3.1) and (3.7) re-
spectively are substituted into the given index addition formula, the result follows
immediately:

2an+r = SPTPkn + Qern

1
P, n—1
_ 8PT% / (Qk + 2\/§ka) da:

-1
1

' QT?i” / (Qx+ Puln+1)22v2) (Q + ka2\f2)n71 dz
-1
1
- 2in / (SnPkPr + QrQr + PrQ.(n + 1)962\/5) (Qk N ka2\/§)n—1 .

—1

and completes the proof. O

REMARK 4.2. Q,, Q2, and @Q2,1, respectively, have integral representations
when we substitute (1,0), (2,0), and (2, 1) for (k,r) at (4.2) given by Theorem 4.2.
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