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INTEGRAL REPRESENTATIONS OF THE PELL AND
PELL-LUCAS NUMBERS

Ahmet İpek

Abstract. We present integral representations of Pell and Pell-Lucas num-

bers for the first time in this paper. In this note, we first give new integral
representations of the Pell numbers Pkn and the Pell-Lucas numbers Qkn and

then using integral representations of the Pell numbers Pkn and the Pell-Lucas

numbers Qkn, we give integral representations of the Pell numbers Pkn+r

and the Pell-Lucas numbers Qkn+r, where n ∈ Z⩾0 = {0, 1, 2, . . .} is a non-

negative integer, k ∈ Z>0 = {1, 2, 3, . . .} is an arbitrary but fixed positive

integer, while r ∈ Z⩾0 is an arbitrary but fixed non-negative integer.

1. Introduction and a simple review of recent developments

The integral representations of the special numbers that are obtained from
different counting sequences are used as a tool in a large number of studies. This
fact indicates the importance of obtaining the integral representations of different
special numbers.

There are many papers devoted to the study of the integral representations
of some special numbers. These integral representations of special numbers have
attracted much attention. The integral representations of special numbers found
in the literature are proved using standard or advanced mathematical techniques
from the integral calculus.

We will now give a brief overview of the most recent developments of the integral
representations related to the special numbers that are obtained from different
counting sequences.
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Most of the works in the literature deal with the integral representations related
to the Catalan numbers.

Recall from [12] and [15] that the Catalan numbers Cn are defined by

Cn =
1

n+ 1

(
2n
n

)
, n = 0, 1, 2, . . . .

Dana-Picard [3] showed that a Catalan number can be defined in many different
ways by the properties of a combinatorial system. Also, in that paper, Dana-Picard
presented the integral representations for these Catalan numbers.

Dana-Picard and Zeitoun [4] computed closed forms for two multiparameter
families of definite integrals. They obtained combinatorial formulas.

Dana-Picard [5] derived a combinatorial identity and obtained two integral
representations of the Catalan numbers.

Dana-Picard [6] obtained integral identities and new integral representations
of the Catalan numbers by searching for closed forms of an integral depending on
a parameter.

Using the Wallis formula and a non-straightforward recurrence formula, Dana-
Picard and Zeitoun [7] gave a sequence of improper integrals for which a closed
formula can be computed. This gives a new integral representation for the Catalan
numbers.

Penson and Sixdeniers [17] established an integral representation for the Cata-
lan numbers by means of the Mellin transform.

Recall from [1] that the Fibonacci numbers Fn, n = 0, 1, 2, . . . , are defined
by F0 = 0, F1 = 1 and

Fn+2 = Fn+1 + Fn, n = 0, 1, 2, . . .

and Lucas numbers Ln, n = 0, 1, 2, . . . , are defined by L0 = 2, L1 = 1 and

Ln+2 = Ln+1 + Ln, n = 0, 1, 2, . . . .

Glasser and Zhou [11] introduced an integral representation for the Fibonacci
numbers. Stewart [18] gave integral representations for the Fibonacci and Lucas
numbers.

Recall from [14] that the Motzkin numbers Mn, n = 0, 1, 2, . . . , are defined
by

Mn =

⌊n/2⌋∑
k=0

(
n
2k

)
Ck, n = 0, 1, 2, . . . .

Mccalla and Nkwanta [13] derived integral representations of Motzkin numbers.
Recall from [16] that the Pell numbers Pn, n = 0, 1, 2, . . . , are defined by

P0 = 0, P1 = 1 and

Pn+2 = 2Pn+1 + Pn, n = 0, 1, 2, . . .

and the formula of the general term is given by

(1.1) Pn =
1

2
√
2

[
(1 +

√
2)n − (1−

√
2)n
]
.



INTEGRAL REPRESENTATIONS OF THE PELL AND PELL-LUCAS NUMBERS 111

Recall from [16] that the Pell-Lucas numbers Qn, n = 0, 1, 2, . . . , are defined
by Q0 = 2, Q1 = 2 and

Qn+2 = 2Qn+1 +Qn, n = 0, 1, 2, . . .

and the formula of the general term is given by

(1.2) Qn = (1 +
√
2)n + (1−

√
2)n.

We refer the reader to Koshy’s (2014) book, which provides an interesting historical
overview of the origins of Pell and Pell-Lucas numbers, for any remaining undefined
terms related to Pell and Pell-Lucas numbers.

The Pell numbers Pn and the Pell-Lucas numbers Qn are frequently employed
in the practical applications and scientific investigation fields. For information on
new developments of these kinds of numbers, please refer to [2], [8], [9], [10] and
closely related references therein.

The purpose of this note is to present a new integral representation of Pell
numbers Pkn and Pell-Lucas numbers Qkn, followed by the construction of integral
representations of Pell numbers Pkn+r and Pell-Lucas numbers Qkn+r based on
integral representations of Pell numbers Pkn and Pell-Lucas numbers Qkn, where
n ∈ Z⩾0 = {0, 1, 2, . . .} is a non-negative integer, k ∈ Z>0 = {1, 2, 3, . . .} is an
arbitrary but fixed positive integer, while r ∈ Z⩾0 is an arbitrary but fixed non-
negative integer.

The following section presents several facts concerning Pell and Pell-Lucas num-
bers.

2. Preliminaries

We will now examine some of the key facts concerning Pell and Pell-Lucas
numbers in this section.

Let α = 1 +
√
2. From (1.1), it follows that

(2.1) Pn =
1

2
√
2

(
αn − (−1)n

αn

)
,

called Binet’s formula for the Pell numbers and from (1.2), it follows that

(2.2) Qn = αn +
(−1)n

αn
,

called Binet’s formula for the Pell-Lucas numbers.
There are the following relations between these two types of numbers and α.

(1) From (2.1) and (2.2), we obtain that the connection among the Pell num-
bers, the Pell-Lucas numbers, and α is for n ∈ Z⩾0

(2.3) αn =
Qn + 2

√
2Pn

2
.
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(2) For the connection between the Pell numbers and the Pell-Lucas numbers,
straightforward computation yields from (2.1) and (2.2) for n ∈ Z⩾0

Q2
n − 8P 2

n =

(
αn +

(−1)n

αn

)2

− 8

(
1

2
√
2

(
αn − (−1)n

αn

))2

=

(
α2n +

(−1)2n

α2n
+ 2αn (−1)n

αn

)
− 8

(
1

8

(
α2n +

(−1)2n

α2n
− 2αn (−1)n

αn

))
= 4(−1)n.(2.4)

(3) For m, r ∈ Z⩾0, from (2.1) and (2.2) we establish the Pell index addition
formulae by direct calculation

PrQm +QrPm =
1

2
√
2

(
αr − (−1)r

αr

)(
αm +

(−1)m

αm

)
+

1

2
√
2

(
αr +

(−1)r

αr

)(
αm − (−1)m

αm

)
=

1

2
√
2

(
αr+m + αr (−1)m

αm
− αm (−1)r

αr
− (−1)r+m

αr+m

)
+

1

2
√
2

(
αr+m − αr (−1)m

αm
+ αm (−1)r

αr
− (−1)r+m

αr+m

)
= 2

1

2
√
2

(
αr+m − (−1)r+m

αr+m

)
= 2Pm+r.(2.5)

(4) For m, r ∈ Z⩾0, from (2.1) and (2.2) we establish the Pell-Lucas index
addition formulae by direct calculation

QmQr + 8PmPr =

(
αm +

(−1)m

αm

)(
αr +

(−1)r

αr

)
+ 8

(
1

2
√
2

)2(
αm − (−1)m

αm

)(
αr − (−1)r

αr

)
= αm+r + (−1)rαm−r + (−1)mαr−m + (−1)m+rα−m−r

+ αm+r − (−1)rαm−r − (−1)mαr−m + (−1)m+rα−m−r

= 2

(
αm+r +

(−1)m+r

αm+r

)
= 2Qm+r.(2.6)

3. Integral representations for the Pell Numbers Pkn and the
Pell-Lucas Numbers Qkn

Our purpose in this section is to present integral representations for the Pell
numbers Pkn and for the Pell-Lucas numbers Qkn, where n ∈ Z⩾0 = {0, 1, 2, . . .} is
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a non-negative integer and k ∈ Z>0 = {1, 2, 3, . . .} is an arbitrary but fixed positive
integer.

The following theorem gives an integral representation of the Pell numbers.

Theorem 3.1. We have an integral representation of the Pell numbers Pkn by
the integral

(3.1) Pkn =
nPk

2n

1∫
−1

(
Qk + 2

√
2Pkx

)n−1

dx

for n ∈ Z⩾0 and arbitrary but fixed k ∈ Z>0.

Proof. Denote the integral to be found by I. We make the substitution

u = g(x) = Qk + 2
√
2Pkx

because its differential is du = 2
√
2Pkdx, which, apart from the factor 2

√
2Pk,

occurs in the integral. Then, we obtain dx = 1
2
√
2Pk

du. Before substituting, deter-

mine the new upper and lower limits of integration. When x = −1, the new lower
limit is u = g(−1) and when x = 1, the new upper limit is u = g(1). Now, we can
substitute to obtain

nPk

2n
I =

nPk

2n

1∫
−1

(
Qk + 2

√
2Pkx

)n−1

dx

=
nPk

2n
1

2
√
2Pk

g(1)∫
g(−1)

un−1du

=
1

2
√
2

n

2n
1

n
[un]

g(1)
g(−1)

=
1

2
√
2

1

2n

[(
Qk + 2

√
2Pkx

)n]1
−1

=
1

2
√
2

[(
Qk + 2

√
2Pkx

2

)n]1
−1

=
1

2
√
2

[(
Qk + 2

√
2Pk

2

)n

−

(
Qk − 2

√
2Pk

2

)n]
.(3.2)
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From (2.3) and (2.4), direct calculation gives

1

αn
=

2

Qn + 2
√
2Pn

=
2
(
Qn − 2

√
2Pn

)(
Qn + 2

√
2Pn

) (
Qn − 2

√
2Pn

)
=

2
(
Qn − 2

√
2Pn

)
Q2

n − 8P 2
n

=
2

4 (−1)
n

(
Qn − 2

√
2Pn

)
=

(−1)
n

2

(
Qn − 2

√
2Pn

)
.

Hence, we have

(3.3)
(−1)

n

αn
=

Qn − 2
√
2Pn

2
.

From (3.2) and (3.3), it follows that

nPk

2n
I =

1

2
√
2

[(
αk
)n −

(
(−1)

k

αk

)n]

=
1

2
√
2

[
αkn − (−1)

kn

αkn

]
= Pkn.

Thus, the proof of Theorem 3.1 is completed. □

Corollary 3.1. We have an integral representation of the Pell numbers Pn

by the integral

Pn =
n

2

1∫
−1

(
1 + x

√
2
)n−1

dx

for n ∈ Z⩾0.



INTEGRAL REPRESENTATIONS OF THE PELL AND PELL-LUCAS NUMBERS 115

Proof. If we write k = 1 in (3.1), then we obtain the integral representations
of Pell numbers Pn as follows:

Pn =
nP1

2n

1∫
−1

(
Q1 + x2

√
2P1

)n−1

dx

=
n

2n

1∫
−1

(
2 + x2

√
2
)n−1

dx

=
n

2

1∫
−1

(
1 + x

√
2
)n−1

dx.

Thus, the proof of Corollary 3.1 is completed. □

The following corollary gives an integral representation of the Pell numbers
with even integer index.

Corollary 3.2. We have an integral representation of the Pell numbers P2n

by the integral

P2n =
n

2n−1

1∫
−1

(
6 + x4

√
2
)n−1

dx.(3.4)

for n ∈ Z⩾0.

Proof. If we set k = 2 in (3.1), then we get an integral representation of the
Pell numbers with even integer index by

P2n =
nP2

2n

1∫
−1

(
Q2 + x2

√
2P2

)n−1

dx

=
n

2n−1

1∫
−1

(
6 + x4

√
2
)n−1

dx.

The proof of Corollary 3.2 is complete. □

The following corollary gives an integral representation of the Pell numbers
with odd integer index..

Corollary 3.3. We have an integral representation of the Pell numbers P2n+1

by the integral

(3.5) P2n+1 =
1

2n+1

1∫
−1

(
4n+ 6 + (n+ 1)x4

√
2
)(

6 + x4
√
2
)n−1

dx

for n ∈ Z⩾0.
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Proof. We first recall the obvious identity P2n+2 = 2P2n+1+P2n. Then, from
this identity, it follows that

(3.6) P2n+1 =
1

2
(P2n+2 − P2n) .

Using a reindexing of n 7→ n + 1 in (3.4), from (3.4) and (3.6) straightforward
computation yields

P2n+1 =
1

2
(P2n+2 − P2n)

=
1

2

n+ 1

2n

1∫
−1

(
6 + x4

√
2
)n

dx− n

2n−1

1∫
−1

(
6 + x4

√
2
)n−1

dx


=

1

2n+1

1∫
−1

(
4n+ 6 + (n+ 1)x4

√
2
)(

6 + x4
√
2
)n−1

dx.

The proof of Corollary 3.3 is complete. □

The following corollary gives a thinly disguised form of Binet’s formula for Pkn.

Corollary 3.4. The Pell numbers Pkn can be represented by

Pkn =
n

2
√
2

αk∫
1

(−α)k

tn−1dt

for n ∈ Z⩾0 and arbitrary but fixed k ∈ Z>0.

Proof. Using the substitution t = 1
2

(
Qk + 2

√
2Pkx

)
in (3.1), we have dt =

2
√
2Pk

2 dx and dx = 2
2
√
2Pk

dt. To find the new limits of integration (3.1) we note

that when x = −1,

t =
1

2

(
Qk − 2

√
2Pk

)
=

1

(−α)
k

and when x = 1,

t =
1

2

(
Qk + 2

√
2Pk

)
= αk.
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Therefore, from (3.1) we obtain

Pkn =
nPk

2n

1∫
−1

(
Qk + 2

√
2Pkx

)n−1

dx

=
nPk

2n

αk∫
1

(−α)k

(2t)
n−1 2

2
√
2Pk

dt

=
nPk

2n
2n−1 2

2
√
2Pk

αk∫
1

(−α)k

(t)
n−1

dt

=
n

2
√
2

αk∫
1

(−α)k

tn−1dt.

The proof of Corollary 3.4 is complete. □

The following theorem gives an integral representation of the Pell-Lucas num-
bers.

Theorem 3.2. We have an integral representation of the Pell-Lucas numbers
Qkn by the integral

(3.7) Qkn =
1

2n

1∫
−1

(
Qk + Pk(n+ 1)x2

√
2
)(

Qk + Pkx2
√
2
)n−1

dx

for n ∈ Z⩾0 and arbitrary but fixed k ∈ Z>0.

Proof. Let

J =

∫ (
Qk + Pk(n+ 1)x2

√
2
)(

Qk + Pkx2
√
2
)n−1

dx.

To evaluate this integral we use the integration by parts. Let

u = Qk + Pk(n+ 1)x2
√
2

and

dv =
(
Qk + Pkx2

√
2
)n−1

dx.

Then,

du = Pk(n+ 1)2
√
2dx

and

v =

∫ (
Qk + Pkx2

√
2
)n−1

dx.
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To evaluate the integral that we have obtained, v =
∫ (

Qk + Pkx2
√
2
)n−1

dx, if we

let t = Qk + Pkx2
√
2, then dt = 2

√
2Pkdx, so dx = 1

2
√
2Pk

dt. Therefore,

v =

∫
1

2
√
2Pk

tn−1dt

=
1

n2
√
2Pk

tn

=
1

n2
√
2Pk

(
Qk + Pkx2

√
2
)n

.

If we let

I =
1

2n

1∫
−1

(
Qk + Pk(n+ 1)x2

√
2
)(

Qk + Pkx2
√
2
)n−1

dx,

then we obtain

I =
1

2n

[uv]
1
−1 −

1∫
−1

vdu


=

1

2n

{
1

n2
√
2Pk

[(
Qk + Pk(n+ 1)x2

√
2
)(

Qk + Pkx2
√
2
)n]1

−1

−Pk(n+ 1)2
√
2

1

n2
√
2Pk

1∫
−1

(
Qk + Pkx2

√
2
)n

dx


=

1

nPk2
√
2

(
Qk + Pk2

√
2

2

)n (
Qk + Pk(n+ 1)2

√
2
)

(3.8)

− 1

nPk2
√
2

(
Qk − Pk2

√
2

2

)n (
Qk − Pk(n+ 1)2

√
2
)

− n+ 1

n2n

1∫
−1

(
Qk + Pkx2

√
2
)n

dx.

From (3.1), we have that

(3.9) Pk(n+1)
2n+1

(n+ 1)Pk
=

1∫
−1

(
Qk + 2

√
2Pkx

)n
dx.
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Hence, from (3.8) and (3.9) we get

I =
1

nPk2
√
2

(
Qk + Pk2

√
2

2

)n (
Qk + Pk(n+ 1)2

√
2
)

− 1

nPk2
√
2

(
Qk − Pk2

√
2

2

)n (
Qk − Pk(n+ 1)2

√
2
)

− n+ 1

n2n
2n+1

(n+ 1)Pk
Pkn+k.

By (2.3), (2.5) and (3.3), it follows that

I =
1

nPk2
√
2
αkn

(
Qk + Pk(n+ 1)2

√
2
)

− 1

nPk2
√
2

(−1)
kn

αkn

(
Qk − Pk(n+ 1)2

√
2
)

− 2

nPk
Pkn+k

=
1

nPk

[
1

2
√
2

(
αkn − (−1)

kn

αkn

)
Qk

+

(
αkn +

(−1)
kn

αkn

)
(n+ 1)Pk

−2Pkn+k]

=
1

nPk
[QkPkn + (n+ 1)PkQkn − 2Pkn+k]

=
1

nPk
[nPkQkn +QkPkn + PkQkn − 2Pkn+k] .(3.10)

Here, if we remember the formula given in (2.5) and substitute k for r and kn for
m in this formula, we see that the following equation is satisfied:

QkPkn + PkQkn − 2Pkn+k = 0.

Hence, (3.10) gives us the result I = Qkn. Consequently, the proof of the theorem
by obtaining the result given in (3.7) is completed. □

Corollary 3.5. We have an integral representation of the Pell-Lucas numbers
Qn by the integral

Qn =

1∫
−1

(
1 + (n+ 1)x

√
2
)(

1 + x
√
2
)n−1

dx

for n ∈ Z⩾0.



120 İPEK

Proof. As a result of writing k = 1 at (3.7), we obtain integral representations
for Pell-Lucas numbers Qn in the following way:

Qn =
1

2n

1∫
−1

(
Q1 + P1(n+ 1)x2

√
2
)(

Q1 + P1x2
√
2
)n−1

dx

=
1

2n

1∫
−1

(
2 + 2(n+ 1)x

√
2
)(

2 + 2x
√
2
)n−1

dx

=

1∫
−1

(
1 + (n+ 1)x

√
2
)(

1 + x
√
2
)n−1

dx

The proof of Corollary 3.5 is completed. □

The following corollary gives an integral representation of the Pell-Lucas num-
bers with even integer index.

Corollary 3.6. We have an integral representation of the Pell-Lucas numbers
Q2n by the integral

(3.11) Q2n =
1

2n

1∫
−1

(
6 + 4(n+ 1)x

√
2
)(

6 + 4x
√
2
)n−1

dx

for n ∈ Z⩾0.

Proof. If we set k = 2 in (3.7), then we get an integral representation of the
even Pell-Lucas numbers by

Q2n =
1

2n

1∫
−1

(
Q2 + P2(n+ 1)x2

√
2
)(

Q2 + P2x2
√
2
)n−1

dx

=
1

2n

1∫
−1

(
6 + 4(n+ 1)x

√
2
)(

6 + 4x
√
2
)n−1

dx.

The proof of Corollary 3.6 is complete. □

The following corollary gives an integral representation of the Pell-Luas num-
bers with even integer index.

Corollary 3.7. We have an integral representation of the Pell-Lucas numbers
Q2n+1 by the integral

(3.12) Q2n+1 =
1

2n

1∫
−1

(
6 + 8n+ 4(n+ 1)x

√
2
)(

6 + 4x
√
2
)n−1

dx

for n ∈ Z⩾0.
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Proof. Recalling that the identity in (80) takes the form of

2Qm+r = QmQr + 8PmPr,

by substituting 2n for m and 1 for r, we get the following identity

2Q2n+1 = Q2nQ1 + 8P2nP1

= 2Q2n + 8P2n.(3.13)

Substituting the integral representations obtained for Q2n and P2n in 3.13 results
in the following integral representation for Q2n+1:

Q2n+1 = Q2n + 4P2n

=
1

2n

1∫
−1

(
6 + 4(n+ 1)x

√
2
)(

6 + 4x
√
2
)n−1

dx

+ 4
n

2n−1

1∫
−1

(
6 + x4

√
2
)n−1

dx

=
1

2n

1∫
−1

(
6 + 8n+ 4(n+ 1)x

√
2
)(

6 + 4x
√
2
)n−1

dx.

Thus, the proof of Corollary 3.7 is completed. □

The following corollary gives a thinly disguised form of Binet’s formula for Qkn.

Corollary 3.8. The Pell-Lucas numbers Qkn can be represented by

Qkn = n

αk∫
1

(−α)k

tn−1dt+
2

(−α)k
.

for n ∈ Z⩾0 and arbitrary but fixed k ∈ Z>0.

Proof. The proof of Corollary 3.8 can be done similarly to the proof of Corol-
lary 3.4. □

4. Integral representations for the Pell Numbers Pkn+r and the
Pell-Lucas Numbers Qkn+r

This section presents the integral representations of Pell numbers Pkn+r and
Pell-Lucas numbers Qkn+r, derived from the integral representations of Pell num-
bers Pkn and Pell-Lucas numbers Qkn, where n ∈ Z⩾0 = {0, 1, 2, . . .} is a non-
negative integer, k ∈ Z>0 = {1, 2, 3, . . .} is an arbitrary but fixed positive integer,
while r ∈ Z⩾0 is an arbitrary but fixed non-negative integer.
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Theorem 4.1. For n ∈ Z⩾0 and arbitrary but fixed k ∈ Z>0 and r ∈ Z⩾0, the
Pell numbers Pkn+r can be represented by the integral

Pkn+r =
1

2n+1

1∫
−1

[(
nPkQr + PrQk + PkPr(n+ 1)x2

√
2
)

(4.1)

×
(
Qk + 2

√
2Pkx

)n−1
]
dx.

Proof. The Pell index addition formula

PrQm +QrPm = 2Pm+r

given by (2.5) with m replaced with kn produces

2Pkn+r = PknQr + PrQkn.

When the integral representations of Pkn and Qkn given by (3.1) and (3.7) re-
spectively are substituted into the given index addition formula, the result follows
immediately:

2Pkn+r = QrPkn + PrQkn

= Qr
nPk

2n

1∫
−1

(
Qk + 2

√
2Pkx

)n−1

dx

+ Pr
1

2n

1∫
−1

(
Qk + Pk(n+ 1)x2

√
2
)(

Qk + Pkx2
√
2
)n−1

dx

=
1

2n

1∫
−1

(
nPkQr + PrQk + PkPr(n+ 1)x2

√
2
)(

Qk + 2
√
2Pkx

)n−1

dx,

and completes the proof. □

Remark 4.1. It is possible to obtain integral representations for Pn, P2n, and
P2n+1 by substituting (1, 0), (2, 0), and (2, 1) for (k, r) in the integral representation
at (4.1) given by Theorem 4.1.

Theorem 4.2. For n ∈ Z⩾0 and arbitrary but fixed k ∈ Z>0 and r ∈ Z⩾0, the
Pell-Lucas numbers Qkn+r can be represented by the integral

Qkn+r =
1

2n+1

1∫
−1

[(
8nPkPr +QkQr + PkQr(n+ 1)x2

√
2
)

(4.2)

×
(
Qk + Pkx2

√
2
)n−1

]
dx.

Proof. The Pell-Lucas index addition formula

QmQr + 8PmPr = 2Qm+r
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given by (1.6) with m replaced with kn produces

QknQr + 8PknPr = 2Qkn+r.

When the integral representations of Pkn and Qkn given by (3.1) and (3.7) re-
spectively are substituted into the given index addition formula, the result follows
immediately:

2Qkn+r = 8PrPkn +QrQkn

= 8Pr
nPk

2n

1∫
−1

(
Qk + 2

√
2Pkx

)n−1

dx

+Qr
1

2n

1∫
−1

(
Qk + Pk(n+ 1)x2

√
2
)(

Qk + Pkx2
√
2
)n−1

dx

=
1

2n

1∫
−1

(
8nPkPr +QkQr + PkQr(n+ 1)x2

√
2
)(

Qk + Pkx2
√
2
)n−1

dx,

and completes the proof. □

Remark 4.2. Qn, Q2n and Q2n+1, respectively, have integral representations
when we substitute (1, 0), (2, 0), and (2, 1) for (k, r) at (4.2) given by Theorem 4.2.
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