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S-F -PRIME FILTER PROPERTY IN LATTICES

Shahabaddin Ebrahimi Atani

Abstract. Let F be a fixed filter of a bounded distributive lattice L and S a

join subset of L. In this paper, we introduce the concept of S-F -prime filters

as a new generalization of S-prime filters. We say that a proper filter P of L
disjoint with S is an S-F -prime filter if there is an element s ∈ S such that for

all a, b ∈ L if a∨ b ∈ P − (P ∨ F ), then s∨ a ∈ P or s∨ b ∈ P . We extend the

notion of S-F -prime property in commutative rings to S-F -prime property in
lattices.

1. Introduction

All lattices considered in this paper are assumed to have a least element denoted
by 0 and a greatest element denoted by 1, in other words they are bounded. As
algebraic structures, lattices are undoubtedly a natural choice of generalizations of
rings. In structure, lattices lie between semigroups and rings. The main aim of this
article is that of extending some results obtained for ring theory to lattice theory.
The main difficulty is figuring out what additional hypothesis the lattice or filter
must satisfy to get similar results. Nevertheless, growing interest in developing
the algebraic theory of lattices can be found in several papers and books (see for
instance [7, 9, 11, 12, 13, 14, 15, 16]).

The notion of prime ideal plays a key role in the theory of commutative algebra,
and it has been widely studied. See, for example, [1]. Recall from [1], a prime ideal
P of R is a proper ideal having the property that ab ∈ P implies either a ∈ P or
b ∈ P for each a, b ∈ R. There are several ways to generalize the notion of a prime
ideal. In 2003, Anderson and Smith in [3] defined weakly prime ideals which is a
generalization of prime ideals (also see [10]). A proper ideal P of a ring R is said
to be a weakly prime if 0 ̸= xy ∈ P for each x, y ∈ R implies either x ∈ P or y ∈ P .

2020 Mathematics Subject Classification. Primary 97H50; Secondary 06A11, 16G30, 06D25.

Key words and phrases. Lattice, join subset, F -filter, S-F -filter.
Communicated by Dusko Bogdanic.

125



126 EBRAHIMI ATANI

Thus every prime ideal is weakly prime. In 2019, Hamed and Malek [17] introduced
the notion of an S-prime ideal (also see [16, 18]), i.e. let S ⊆ R be a multiplicative
set and I an ideal of R disjoint from S. We say that I is S-prime if there exists an
s ∈ S such that for all a, b ∈ R with ab ∈ I, we have sa ∈ I or sb ∈ I. Almahdi et.
al. [4] introduced the notion of a weakly S-prime ideal as follows: We say that I is
a weakly S-prime ideal of R if there is an element s ∈ S such that for all x, y ∈ R
if 0 ̸= xy ∈ I, then sx ∈ I or sy ∈ I. Akray and Hussein generalized the concept of
I-prime submodules in [6] (also see [5]). Let R be a commutative ring and I be a
fixed ideal of R. Then a proper submodule P of an R-module M is called I-prime
submodule of M if rm ∈ P − IP for all r ∈ R and m ∈ M implies that either
m ∈ P or r ∈ (P :R M), and a proper ideal P of R is I-prime if for a, b ∈ R with
ab ∈ P − IP implies either a ∈ P or b ∈ P . So every weakly prime is I-prime.

Let F be a fixed filter of a bounded distributive lattice L. Among many other
results in this paper, the first, preliminaries section contains elementary obser-
vations needed later on. Section 3 is dedicated to the investigation of the some
basic properties of F -prime filters. Following the concept of I-prime ideals, we
define F -prime filters of L. A proper filter P of L is F -prime if for a, b ∈ L with
a∨ b ∈ P − (F ∨P ) implies either a ∈ P or b ∈ P . In this section, we are interested
in investigating F -prime filters to use other notions of I-prime ideals, and associate
which exist in the literature as laid forth in [5, 6]. At first, we define the definition
of F -prime filters (Definition 3.1) and we give an example (Example 3.2 (3)) of a
F -prime filter of L that is not a weakly prime filter (so it is not prime). It is proved
(Proposition 3.1)) that If L is a local lattice with unique maximal filter M , then
every proper filter of L is a M -prime filter. It is shown that (Theorem 3.1) that if
P is a F -prime filter of L that is not prime, then P ⊆ F . In the Corollary 3.2, we
give a condition under which a F -prime filter of L is a prime filter. In the Theorem
3.2, We give three other characterizations of F -prime filters. In the rest of this
section, we investigate the properties of F -prime filters similar to prime filters. In
particular, we investigate the behavior of F -prime filters under homomorphism, in
factor lattices and in cartesian products of lattices (see Theorem 3.3, Theorem 3.4,
Theorem 3.5, Theorem 3.6 and Theorem 3.7).

We say that a subset S ⊆ L is join subset if 0 ∈ S and s1∨s2 ∈ S for all s1, s2 ∈
S (if P is a prime filter of L, then L∖P is a join subset of L). In Section 4, we give
the definition of S-F -prime filter (Definition 4.1) and provide an example (Example
4.1 (6)) of an S-F -prime filter of L that is not an S-prime filter. In the Theorem
4.1, We give a characterization of S-F -prime filters. We provide some conditions
under which an intersection of a family of S-F -prime filters of L is an S-F -prime
filter (see Theorem 4.2). The rest of this section, we investigate the behavior of
S-F -prime filters under homomorphism, in factor lattices, S-Noetherian lattices
and in cartesian products of lattices (see Theorem 4.4, Theorem 4.5, Theorem 4.6,
Theorem 4.7, Theorem 4.8, Theorem 4.9 and Theorem 4.10).
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2. Preliminaries

A poset (L,⩽) is a lattice if sup{a, b} = a ∨ b and inf{a, b} = a ∧ b exist for all
a, b ∈ L (and call ∧ the meet and ∨ the join). A lattice L is called a distributive
lattice if (a∨b)∧c = (a∧c)∨(b∧c) for all a, b, c in L (equivalently, L is distributive
if (a∧ b)∨ c = (a∨ c)∧ (b∨ c) for all a, b, c in L). A non-empty subset F of a lattice
L is called a filter, if for a ∈ F , b ∈ L, a ⩽ b implies b ∈ F , and x ∧ y ∈ F for
all x, y ∈ F (so if L is a lattice with 0 and 1, then 1 ∈ F , {1} is a filter of £ and
0 ∈ F if and only if F = L). A proper filter P of L is called prime (resp. weakly
prime) if x ∨ y ∈ P (resp. 1 ̸= x ∨ y ∈ P ), then x ∈ P or y ∈ P . A proper filter F
of L is said to be maximal if G is a filter in L with F ⫋ G, then G = L. A lattice
L is called local if it has exactly one maximal filter that contains all proper filters.
Assume that P is a filter of L and let S be a join subset of L disjoint with S. We
say that P is an S-prime filter of L if there is an element s ∈ S such that for all
x, y ∈ L if x ∨ y ∈ L, then s ∨ x ∈ or s ∨ y ∈ P .

Let D be subset of a lattice L. Then the filter generated by D, denoted by
T (D), is the intersection of all filters that is containing D. A filter F is called
finitely generated if there is a finite subset D of F such that F = T (D). If x ∈ L,
then a complement of x in L is an element y ∈ L such that x∨y = 1 and x∧y = 0.
The lattice L is complemented if every element of L has a complement in L. If L
and L′ are lattices, then a lattice homomorphism f : L → L′ is a map from L to
L′ satisfying f(x ∨ y) = f(x) ∨ f(y) and f(x ∧ y) = f(x) ∧ f(y) for x, y ∈ L. For
undefined notations or terminologies in lattice theory, we refer the reader to [7, 9].
First we need the following easy observations proved in [11, 12, 13, 14].

Lemma 2.1. Let L be a lattice.
(1) A non-empty subset F of L is a filter of L if and only if x ∨ z ∈ F and

x ∧ y ∈ F for all x, y ∈ F , z ∈ L. Moreover, since x = x ∨ (x ∧ y), y = y ∨ (x ∧ y)
and F is a filter, x ∧ y ∈ F gives x, y ∈ F for all x, y ∈ L.

(2) Let A be an arbitrary non-empty subset of L. Then

T (A) = {x ∈ L : a1 ∧ a2 ∧ · · · ∧ an ⩽ x for some ai ∈ A (1 ⩽ i ⩽ n)}.

Lemma 2.2. Let F,G be filters of L and z ∈ L. Then the following hold:
(1) F ∨G = {a ∨ b : a ∈ F, b ∈ G} and z ∨ F = {z ∨ y : y ∈ F} are filters of L

with F ∨G = F ∩G.
(2) If L is distributive, then F ∧G = {a∧ b : a ∈ F, b ∈ G} is a filter of L with

F,G ⊆ F ∧G
(3) If L is distributive, then (G :L F ) = {x ∈ L : x ∨ F ⊆ G} and (F :L

T ({z})) = (F :L z) = {a ∈ L : a ∨ z ∈ F} are filters of L.
(4) If v : L → L′ is a lattice homomorphism such that v(1) = 1, then Ker(v) =

{x ∈ L : v(x) = 1} is a filter of L.

3. Characterization of F -prime filters

In this section, we collect some basic properties concerning F -prime filters. We
remind the reader with the following definition.
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Definition 3.1. Let F be a fixed filter of a lattice L. A proper filter P of L
is F -prime if for a, b ∈ L with a ∨ b ∈ P − (F ∨ P ) implies either a ∈ P or b ∈ P .

Example 3.1. (1) If P is a proper filter of L, then P is always P -prime since
P − (P ∨ P ) = P − P = ∅.

(2) Let P and Q be filters of L with P ⊆ Q. If P is proper, then P is always
Q-prime since P − (P ∨Q) = P − P = ∅. In particular, P is always L-prime.

Example 3.2. (1) If F = {1}, then the F -prime and the weakly prime filters
of L are the same.

(2) Suppose that P is a weakly prime (i.e. {1}-prime) filter of L and let F be a
filter of L. Let a, b ∈ L such that a∨ b ∈ P − (P ∨F ); so a∨ b ̸= 1 since 1 ∈ P ∨F .
It follows that a ∈ P or b ∈ P . Thus, every weakly prime filter (prime filter) is
F -prime.

(3) Let L = {0, a, b, c, 1} be a lattice with the relations 0 ⩽ a ⩽ c ⩽ 1,
0 ⩽ b ⩽ c ⩽ 1, a ∨ b = c and a ∧ b = 0. An inspection will show that the nontrivial
filters (i.e. different from L and {1}) of L are F1 = {1, c}, F2 = {1, c, a} and
F3 = {1, c, b}. Then F1 is an F2-prime filter of L by Example 3.1 (2). Also, F1

is not a weakly prime (prime) filter of L because 1 ̸= a ∨ b = c ∈ F1, a /∈ F1 and
b /∈ F1. Thus an F -prime filter need not be a weakly prime filter (prime filter).

Example 3.3. Let F and G be filters of L such that F ⊆ G. If P is an F -prime
filter of L, then P is an G-prime filter (since F ⊆ G gives P−(P∨G) ⊆ P−(P∨F )).
However, the converse is not true in general. Indeed, assume that L is the lattice
as in Example 3.2 (3) and let F = {1} ⊆ G = F2. Then P = F1 is an G-prime
filter of L but not an F -prime filter of L.

Proposition 3.1. If L is a local lattice with unique maximal filter M , then
every proper filter of L is an M -prime filter.

Proof. Let P be a proper filter of L. Then P ⊆ M by [14, Lemma 2.1]. Now
the assertion follows from Example 3.1 (2). □

An element a ∈ L is called irreducible if a = x ∨ y, then either x ∈ T ({a}) or
y ∈ T ({a}). Compare the next example with Theorem 2.11 (2) and Theorem 2.11
(3) in [5].

Example 3.4. The collection of ideals of Z, the ring of integers, form a lattice
under set inclusion which we shall denote by L with respect to the following defi-
nitions: mZ∨nZ = (m,n)Z and mZ∧nZ = [m,n]Z for all ideals mZ and nZ of Z,
where (m,n) and [m,n] are greatest common divisor and least common multiple of
m,n, respectively. Note that L is a distributive complete lattice with least element
the zero ideal and the greatest element Z. By [11, Theorem 2.9 (ii)], M = L∖{0} is
the only maximal filter of L and so L is a local lattice. It follows from Proposition
3.1 that every proper filter of L is a M -prime filter. Consider the M -prime filter
P = T ({3Z}) = {Z, 3Z}.

(1) Since 1 ̸= 6Z ∨ 9Z = 3Z ∈ P with 6Z, 9Z /∈ P , we conclude that P is not
a weakly prime ({1}-prime) filter. Moreover, P − P ∨ F = P − P = ∅ gives P is
F -prime for every filter P ⊆ F of L but it is not {1}-prime.
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(2) Since 6Z∨ 9Z = 3Z with 6Z, 9Z /∈ P , we infer that 3Z is not an irreducible
element. Thus an M -prime filter need not be an irreducible element.

Henceforth we will assume that F is a fixed filter of L.

Theorem 3.1. Let P be an F -prime filter of L. If P is not prime, then P ⊆ F .

Proof. Suppose that P ⊈ F ; we show that P is prime. Let x, y ∈ L such
that x ∨ y ∈ P . If x ∨ y /∈ P ∨ F , then P is an F -prime gives x ∈ P or y ∈ P . So
we may assume that x ∨ y ∈ P ∨ F . By the hypothesis, there exists z ∈ P such
that z /∈ F which implies that z ∧ (x ∨ y) ∈ P − (P ∨ F ) by Lemma 2.1 (1). Then
(x ∧ z) ∨ (y ∧ z) = z ∧ (x ∨ y) ∈ P − (P ∨ F ) implies that x ∧ z ∈ P or y ∧ z ∈ P ;
hence x ∈ P or y ∈ P by Lemma 2.1 (1), i.e. P is prime. □

Corollary 3.1. Let P be an {1}-prime filter of L. If P is not a prime filter,
then P = {1}.

Proof. This is a direct consequence of Theorem 3.1. □

Corollary 3.2. Let P be an F -prime filter of L. If P ⊈ F , then P is a prime
filter of L.

Proof. This is a direct consequence of Theorem 3.1. □

We next give three other characterizations of F -prime filters. Compare the
next theorem with Theorem 2.12 in [5].

Theorem 3.2. If P is a proper filter of L, then the following statements are
equivalent:

(1) P is an F -prime filter of L;
(2) For a ∈ L − P , (P :L a) = P ∪ (P ∨ F :L a);
(3) For a ∈ L − P , (P :L a) = P or (P :L a) = (P ∨ F :L a);
(4) For filters G and K of L with G ∨ K ⊆ P and G ∨ K ⊈ P ∨ F , either

G ⊆ P or K ⊆ P .

Proof. (1) ⇒ (2) Since the inclusion P ∪ (P ∨ F :L a) ⊆ (P :L a) is clear,
we will prove the reverse inclusion. Let x ∈ (P :L a), where a ∈ L − P . If
x ∨ a ∈ P − (P ∨ F ), then x ∈ P , as P is an F -prime filter. If x ∨ a ∈ P ∨ F , then
x ∈ (P ∨ F :L a), and so we have equality.

(2) ⇒ (3) Since (P :L a) ⊆ P ∪ (P ∨ F :L a) by (2), we conclude that either
(P :L a) ⊆ P or (P :L a) ⊆ (P ∨ F :L a) by [11, Remark 2.3 (i)], and so (3) holds.

(3) ⇒ (4) On the contrary, assume that G ⊈ P and K ⊈ P . It is enough to
show that G ∨ K ⊆ P ∨ F . Let x ∈ G. If x /∈ P , then x ∨ K ⊆ P implies that
K ⊆ (P :L x). Now, K ⊈ P gives K ⊆ (P ∨ F :L x) by (3); hence x ∨K ⊆ P ∨ F .
So we may assume that x ∈ P . By assumption, there exists y ∈ G such that y /∈ P ;
thus x ∧ y /∈ P and x ∧ y ∈ G by Lemma 2.1 (1). By an argument like that as
above, (x∧y)∨G ⊆ P ∨F . Let k ∈ K. Then (x∧y)∨k = (x∨k)∧ (y∨k) ∈ P ∨F
gives x∨k ∈ P ∨F by lemma 2.1 (1); so x∨K ⊆ P ∨F . Therefore, G∨K ⊆ P ∨F ,
as required.



130 EBRAHIMI ATANI

(4) ⇒ (1) Let a, b ∈ L such that a ∨ b ∈ P − (P ∨ F ). Set G = T ({a}) and
K = T ({b}). Then G∨K ⊆ P and G∨K ⊈ P ∨ F gives a ∈ G ⊆ P or b ∈ K ⊆ P
by (4); i.e. (1) holds. □

We continue this section with the investigation of the stability of F -prime filters
in various lattice-theoretic constructions.

Theorem 3.3. Assume that v : L → L′ is a lattice homomorphism such that
v(1) = 1 and let L be a complemented lattice. If v is an epimorphism and P is an
F -prime filter of L with Ker(v) ⊆ P , then v(P ) is an v(F )-prime filter of L′.

Proof. Clearly, v(P ) and v(F ) are filters of L′, as v is epimorphism. Let
x, y ∈ L′ such that x∨y ∈ v(P )−v(P )∨v(F ) = v(P )−v(P ∨F ). Then there exist
a, b ∈ L such that x = v(a), y = v(b) and v(a ∨ b) = x ∨ y ∈ v(P ) − v(P ∨ F ); so
a∨ b /∈ P ∨F and v(a∨ b) = v(p) for some p ∈ P . By the hypothesis, p∨p′ = 1 and
p∧p′ = 0 for some p′ ∈ L. Since v(a∨b∨p′) = v(a∨b)∨v(p′) = v(1) = 1, we conclude
that a∨ b∨p′ ∈ Ker(v) ⊆ P . As a∨ b = (a∨ b)∨ (p∧p′) = (a∨ b∨p)∧ (a∨ b∨p′) ∈
P − (P ∨ F ), we infer that a ∈ P or b ∈ P which implies that x = v(a) ∈ v(P ) or
y = v(b) ∈ v(P ), i.e. the result holds. □

Theorem 3.4. Assume that v : L → L′ is a lattice homomorphism such that
v(1) = 1 and let v(F ) be a filter of L′. If v is a monomorphism and P ′ is an
v(F )-prime filter of L′, then P = v−1(P ′) is an F -prime filter of L.

Proof. Let a, b ∈ L such that a ∨ b ∈ P − (P ∨ F ). If v(a ∨ b) ∈ v(F ), then
v(a ∨ b) = v(f) for some f ∈ F ; so a ∨ b = f ∈ P ∨ F since v is injective, a
contradiction. Thus, v(a ∨ b) /∈ P ′ ∨ v(F ). Now, since v(a ∨ b) = v(a) ∨ v(b) ∈
P ′ −P ′ ∨ v(F ) and P ′ is an v(F )-prime filter, we infer that v(a) ∈ P ′ or v(b) ∈ P ′.
Hence, a ∈ P or b ∈ P , and so P = v−1(P ′) is an F -prime filter of L. □

In the following example, it is shown that the condition ”v(F ) is a filter of L′”
in Theorem 3.4 cannot be omitted.

Example 3.5. Assume that L is the lattice as in Example 3.2 (3). Then there
is a mapping v : L → L given the formula v(a) = v(c) = a, v(0) = 0 = v(b) and
v(1) = 1, and it is clear that v is a lattice homomorphism and v(F2) = {1, a} is not
a filter of L.

Corollary 3.3. If L is a sublattice of L′ and P ′ is an F -prime filter of L′,
then P ′ ∩ L is an F -prime filter of L.

Proof. It suffices to apply Theorem 3.4 to the natural injection ι : L → L′

since ι−1(P ′) = P ′ ∩ L. □

Quotient lattices are determined by equivalence relations rather than by ideals
as in the ring case. If F is a filter of a lattice (L,⩽), we define a relation on L,
given by x ∼ y if and only if there exist a, b ∈ F satisfying x∧ a = y∧ b. Then ∼ is
an equivalence relation on L, and we denote the equivalence class of a by a∧F and
these collection of all equivalence classes by L/F . We set up a partial order ⩽Q on
L/F as follows: for each a ∧ F, b ∧ F ∈ L/F , we write a ∧ F ⩽Q b ∧ F if and only
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if a ⩽ b. The following notation below will be used in this paper: It is straightfor-
ward to check that (L/F,⩽Q) is a lattice with (a∧F )∨Q (b∧F ) = (a∨ b)∧F and
(a ∧ F ) ∧Q (b ∧ F ) = (a ∧ b) ∧ F for all elements a ∧ F, b ∧ F ∈ L/F . Note that
f ∧ F = F if and only if f ∈ F (see [12, Remark 4.2 and Lemma 4.3]).

Compare the next proposition with Proposition 2.2 in [5].

Proposition 3.2. If P is a proper filter of L, then the following statements
are equivalent:

(1) P is an F -prime filter of L;
(2) P/(P ∨ F ) is a weakly prime filter of L/(P ∨ F ).

Proof. (1) ⇒ (2) Set P ∨ F = G. Suppose that P is an F -prime filter of L
and let 1 ∧ G ̸= (x ∧ G) ∨Q (y ∧ G) = (x ∨ y) ∧ G ∈ P/G for x ∧ G, y ∧ G ∈ L/G
(so x ∨ y /∈ G and x ∨ y ∈ P by [12, Remark 4.2 and Lemma 4.3]). Then by the
hypothesis, x∨y ∈ P −G gives x ∈ P or y ∈ P ; hence x∧G ∈ P/G or y∧G ∈ P/G,
i.e. (2) holds.

(2) ⇒ (1) Assume that P/G is a weakly prime filter of L/G and let x, y ∈ L
such that x ∨ y ∈ P − G, where G = P ∨ F . Then by assumption, 1 ∧ G ̸=
(x∨ y)∧G = (x∧G)∨Q (y ∧G) ∈ P/G gives x∧G ∈ P/G or y ∧G ∈ P/G; hence
x ∈ P or y ∈ P . Thus, P is an F -prime filter of L. □

Lemma 3.1. If G is a filter of L, then FQ(G) = {a ∧ G : a ∈ F} is a filter of
L/G.

Proof. Let a∧G, b∧G ∈ FQ(G) and x∧G ∈ L/G. Since a∧ b, a∨x ∈ F , we
conclude that (a ∧G) ∧Q (b ∧G) = (a ∧ b) ∧G ∈ FQ(G) and (a ∧G) ∨Q (x ∧G) =
(a ∨ x) ∧G ∈ FQ(G); so FQ(G) is a filter of L/G by Lemma 2.1 (1). □

Compare the next theorem with Proposition 2.14 (1) in [5].

Theorem 3.5. Assume G is a filter of a complemented lattice L and let P be
a filter of L such that G ⊆ P . If P is an F -prime filter of L, then P/G is an
FQ(G)-prime filter of L/G.

Proof. Assume that v : L → L/G such that v(a) = a ∧ G and let x, y ∈ L.
Then v(x ∨ y) = (x ∨ y) ∧ G = (x ∧ G) ∨Q (y ∧ G) = v(x) ∨Q v(y). Similarly,
v(x ∧ y) = v(x) ∧Q v(y). So v is a lattice homomorphism from L onto L/G,
v(1) = 1 ∧ G = 1L/G and v(F ) = FQ. Suppose that P is an F -prime filter of
L. Since Ker(v) = G ⊆ P and v is onto, we conclude that v(P ) = P/G (see [12,
Lemma 3.4]) is an FQ(G)-prime filter of L/G by Theorem 3.3. □

Theorem 3.6. Assume that P is a filter of a lattice L with F ∩ P = {1} and
let G be a filter of L such that G ⊆ P . If P/G is an FQ-prime filter of L/G and G
is an F -prime filter of L, then P is F -prime.

Proof. Let a, b ∈ L such that a∨ b ∈ P − (P ∨F ). Then (a∧G)∨Q (b∧G) =
(a∨ b)∧G ∈ P/G. If (a∨ b)∧G /∈ FQ, then P/G is a FQ-prime gives a∧G ∈ P/G
or b∧G ∈ P/G which implies that a ∈ P or b ∈ P by [12, Lemma 4.3]. So we may
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assume that (a ∨ b) ∧G ∈ FQ. It follows that (a ∨ b) ∧G = f ∧G for some f ∈ F ;
thus (a∨b)∧g1 = f∧g2 for some g1, g2 ∈ G. Since (a∨b)∧g1 ∈ P and P ∩F = {1},
we conclude that f = 1 by Lemma 2.1 (1); hence (a ∧ g1) ∨ (b ∧ g1) ∈ G− (G ∨ F )
(since a ∨ b /∈ F , we infer that (a ∨ b) ∧ g1 /∈ F by Lemma 2.1 (1)). Now, G is
F -prime gives a∧g1 ∈ G or b∧g1 ∈ G which implies that a ∈ G ⊆ P or b ∈ G ⊆ P ,
as needed. □

Assume that (L)1,⩽1), (L)2,⩽2) are lattices and let L = L1 × L2. We set up
a partial order ⩽c on L as follows: for each x = (x1, x2), y = (y1, y2) ∈ L, we write
x ⩽c y if and only if xi ⩽i yi for each i ∈ {1, 2}. The following notation below will
be used in this paper: It is straightforward to check that (L,⩽c) is a lattice with
x ∨c y = (x1 ∨ y1, x2 ∨ y2) and x ∧c y = (x1 ∧ y1, x2 ∧ y2). In this case, we say that
L is a decomposable lattice.

Compare the next theorem with Theorem 2.15 in [5].

Theorem 3.7. Let L = L1 × L2 be a decomposable lattice and F = F1 × F2,
where Fi is a filter of Li, i = 1, 2. Then the F -prime filters of L have exactly one
of the following three types:

(1) P1 × P2, where Pi is a proper filter of Li with Pi ⊆ Fi, i = 1, 2;
(2) P1 × L2, where P1 is an F1-prime filter of L1 and F2 = L2;
(3) L1 × P2, where P2 is an F2-prime filter of L2 and F1 = L1.

Proof. First we discuss these filters and show that they are F -prime filters,
then we show that there are no more F -prime filters. Since P1 × P2 − (P1 × P2) ∨
(F1 × F2) = P1 × P2 − (P1 ∨ F1) × (P2 ∨ F2) = P1 × P2 − P1 × P2 = ∅, we infer
that P1 × P2 is an F -prime. Suppose that P1 is an F1-prime filter of L1 and
F2 = L2. If (a, b) ∨c (c, d) = (a ∨ c, b ∨ d) ∈ P1 × L2 − (P1 × L2) ∨ (F1 × L2) =
P1 × L2 − (P1 ∨ F1) × L2 = (P1 − P1 ∨ F1) × L2 for some (a, b), (c, d) ∈ L, then
a ∨ c ∈ P1 − (P1 ∨ F1) gives a ∈ P1 or c ∈ P1 which implies that (a, b) ∈ P1 × L2

or (c, d) ∈ P1 ×L2; so P1 ×L2 is F -prime. Similarly, L1 ×P2 is F -prime. Now, we
show that there are no more F -prime filters. Suppose that G1 ×G2 is an F -prime
filter of L and let x, y ∈ L1 such that x∨y ∈ G1− (G1∨F1). Then (x, 1)∨c (y, 1) =
(x ∨ y, 1) ∈ G1 × G2 − (G1 ∨ F1) × (G2 ∨ F2) implies that (x, 1) ∈ G1 × G2 or
(y, 1) ∈ G1 × G2 and so x ∈ G1 or y ∈ G1. Therefore, G1 is F1-prime. Similarly,
G2 is F2-prime. If G1 × G2 = (G1 ∨ F1) × (G2 ∨ F2), then G1 ⊆ F1 and G2 ⊆ F2

and so we are done. So we may assume that G1 × G2 ̸= (G1 ∨ F1) × (G2 ∨ F2),
say G1 ̸= G1 ∨ F1. Let g1 ∈ G1 − (G1 ∨ F1) (so g1 /∈ F1) and g2 ∈ G2. Then
(g1, 0) ∨c (0, g2) ∈ G1 × G2 − (G1 ∨ F1) × (G2 ∨ F2) gives (g1, 0) ∈ G1 × G2 or
(0, g2) ∈ G1×G2; hence 0 ∈ G1 or 0 ∈ G2 which implies that G1 = L1 or G2 = L2.
Let G1 = L1. Then L1 ×G2 is F -prime, where G2 is an F2-prime filter of L2. □

Corollary 3.4. Let L = L1 × L2 be a decomposable lattice. Then the weakly
prime filters of L have exactly one of the following three types:

(1) {1} × {1};
(2) P1 × {1}, where P1 is a weakly prime filter of L1;
(3) {1} × P2, where P2 is a weakly prime filter of L2.
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Proof. Take F = {1} × {1} in the Theorem 3.7. □

4. Characterization of S-F -prime filters

We continue to use the notation already established, so F is a fixed filter of L.
In this section, we collect some basic properties concerning S-F -prime filters. We
remind the reader the following definition.

Definition 4.1. Let S be a join subset of L. We say that a proper filter P of
L with P ∩ S = ∅ is an S-F -prime filter if there is an element s ∈ S such that for
all a, b ∈ L if a ∨ b ∈ P − (P ∨ F ), then s ∨ a ∈ P or s ∨ b ∈ P .

Example 4.1. (1) If S = {0}, then the F -prime and the S-F -prime filters of
L are the same.

(2) If P is a F -prime filter of L disjoint with S, then P is an S-F -prime filter.
Moreover, since every prime filter is F -prime, we infer that every prime filter of L
disjoint with S is S-F -prime.

(3) If P is a proper filter of L, then P is always S-P -prime since P − (P ∨P ) =
P − P = ∅.

(4) Let P and Q be filters of L with P ⊆ Q. If P is proper, then P is always
S-Q-prime since P − (P ∨Q) = P − P = ∅. In particular, P is always S-L-prime.

(5) If L is a local lattice with unique maximal filter M , then every proper filter
of L is a S-M -prime filter by (4).

(6) It is clear that if P is an S-prime filter of L, then P is an S-F -prime
filter. However, the converse is not true in general. Indeed, let D = {a, b, c}. Then
L = {X : X ⊆ D} forms a distributive lattice under set inclusion with greatest
element D and least element ∅ (note that if x, y ∈ L, then x ∨ y = x ∪ y and
x ∧ y = x ∩ y). Set P = {D}, F = {{a, b}, D} and S = {{a}, ∅}. Then S is a
join subset of L disjoint with P and P is clearly an S-F -prime filter of L. Since
{a, b} ∨ {c} ∈ P , {a} ∨ {a, b} /∈ P and {a} ∨ {c} /∈ P , it follows that P is not a
S-prime filter of L. Thus an S-F -prime filter need not be an S-prime filter.

Proposition 4.1. Assume that P is a filter of L and let S be a join subset of
L disjoint with P . The following hold:

(1) Let Q be a filter of L such that Q ∩ S ̸= ∅. If P is an S-F -prime filter of
L, then P ∨Q is an S-F -prime filter of £;

(2) Let L ⊆ L′ an extension of lattices. If Q is an S-F -prime filter of L′, then
Q ∨ L is an S-F -prime filter of £.

Proof. (1) Since P ∨Q ⊆ P , we conclude that (P ∨Q)∩S = ∅. Suppose that
q ∈ S ∩Q and let x, y ∈ L such that x ∨ y ∈ (P ∨Q)− (P ∨Q ∨ F ) which implies
that x ∨ y ∈ P − (P ∨ F ). Then there is an element s ∈ S such that s ∨ x ∈ P or
s ∨ y ∈ P which gives (s ∨ q) ∨ x ∈ P ∨Q or (s ∨ q) ∨ y ∈ P ∨Q, where s ∨ q ∈ S,
i.e. (1) holds.

(2) Let x, y ∈ L such that x∨y ∈ (Q∨L)− (Q∨L∨F ); so x∨y ∈ Q− (Q∨F ).
Then there is an element s ∈ S such that s∨x ∈ Q or s∨ y ∈ Q which implies that
s ∨ x ∈ Q ∨ L or s ∨ y ∈ Q ∨ L. This completes the proof. □
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Theorem 4.1. Assume that P is a filter of L and let S be a join subset of L
disjoint with P . The following assertions are equivalent:

(1) P is an S-F -prime filter of L;
(2) There exists s ∈ S such that for all G,K two filters of L, if G ∨ K ⊆ P

and G ∨K ⊈ P ∨ F , then s ∨G ⊆ P or s ∨K ⊆ P .

Proof. (1) ⇒ (2) By the hypothesis, there is an element s ∈ S such that for
all x, y ∈ L, if x ∨ y ∈ P − (P ∨ F ), then s ∨ x ∈ P or s ∨ y ∈ P . On the contrary,
suppose that for all t ∈ S, there are Gt,Kt two filters of L with Gt ∨Kt ⊆ P and
Gt ∨ Kt ⊈ P ∨ F , but t ∨ Gt ⊈ P and t ∨ Kt ⊈ P . Since s ∈ S, we conclude
that there exist Gs,Ks two filters of L with Gs ∨Ks ⊆ P and Gs ∨Ks ⊈ P ∨ F ,
but s ∨ Gs ⊈ P and s ∨ Ks ⊈ P . This implies that there exist xs, x

′
s ∈ Gs and

ys, y
′
s ∈ Ks such that s∨xs /∈ P , s∨ys /∈ P and x′

s∨y′s /∈ P ∨F (so x′
s∨y′s /∈ F ). It

follows that s∨(xs∧x′
s) = (s∨xs)∧(s∨x′

s) /∈ P , s∨(ys∧y′s) = (s∨ys)∧(s∨y′s) /∈ P
and (xs ∧ x′

s) ∨ (ys ∧ y′s) = (xs ∨ ys) ∧ (x′
s ∨ ys) ∧ (xs ∨ y′s) ∧ (x′

s ∨ y′s) /∈ P ∨ F by
Lemma 2.1 (1). This shows that there exist xs ∧ x′

s ∈ Gs and ys ∧ y′s ∈ Ks such
that s ∨ (xs ∧ x′

s) /∈ P and s ∨ (ys ∧ y′s) /∈ P which is a contradiction, as P is an
S-F -prime filter, i.e. (2) holds.

(2) ⇒ (1) Let x, y ∈ L such that x ∨ y ∈ P − (P ∨ F ). Set G = T ({x}) and
K = T ({y}). Then G ∨K ⊆ P and G ∨K ⊈ P ∨ F gives there exits s ∈ S such
that s ∨ x ∈ s ∨G ⊆ P or s ∨ y ∈ s ∨K ⊆ P by (2), i.e. (1) holds. □

Proposition 4.2. Assume that P is a filter of L and let S be a join subset of L
disjoint with P . Then P is an S-F -prime filter if and only if there exists s ∈ S such
that for all G1, · · · , Gn filters of L, if G1∨· · ·∨Gn ⊆ P and G1∨· · ·∨Gn ⊈ P ∨F ,
then s ∨Gi ⊆ P for some i ∈ {1, · · · , n}.

Proof. Let P be an S-F -prime filter of L. Then there is an element s ∈ S
such that for all x, y ∈ L, if x ∨ y ∈ P − (P ∨ F ), then s ∨ x ∈ P or s ∨ y ∈ P . We
use induction on n. We can take n = 2 as a base case by Theorem 4.1. Let n ⩾ 3,
assume that the property holds up to the order n−1 and let G1, · · · , Gn filters of £
such that G1∨· · ·∨Gn = (G1∨· · ·∨Gn−1)∨Gn ⊆ P and (G1∨· · ·∨Gn−1)∨Gn ⊈
P ∨F . Then by Theorem 4.1, s∨Gn ⊆ P or (s∨G1)∨G2 ∨ · · · ∨Gn−1 ⊆ P . Since
(s ∨ G1) ∨ G2 ∨ · · · ∨ Gn−1 ⊈ P ∨ F , we infer from the induction hypothesis that
s∨Gn ⊆ P or (s∨ s∨G1 = s∨G1 ⊆ P or s∨Gi ⊆ P for some i ∈ {2, · · · , n− 1}).
In the same way we prove that s ∨ Gi ⊆ P for some i ∈ {1, 2, · · · , n}. The other
side is clear. □

Corollary 4.1. Let P be a proper filter of L. Then P is an F -prime filter if
and only if for all G1, · · · , Gn filters of L, if G1∨· · ·∨Gn ⊆ P and G1∨· · ·∨Gn ⊈
P ∨ F , then Gi ⊆ P for some i ∈ {1, · · · , n}.

Proof. Take S = {0} in Proposition 4.2. □

Corollary 4.2. Assume that P is a filter of L and let S be a join subset of
£ disjoint with P . Then P is an S-F -prime filter if and only if there exists s ∈ S
such that for all a1, a2, · · · , an ∈ L, if a1 ∨ · · · ∨ an ∈ P and a1 ∨ · · · ∨ an /∈ P ∨ F ,
then s ∨ ai ∈ P for some i ∈ {1, · · · , n}.
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Proof. Assume that P is an S-F -prime filter of L and let a1, · · · , an ∈ L such
that a1∨· · ·∨an ∈ P and a1∨· · ·∨an /∈ P∨F . Therefore, T ({a1})∨· · ·∨T ({an}) ⊆ P
and T ({a1}) ∨ · · · ∨ T ({an}) ⊈ P ∨ F . Then by Proposition 4.2, there exists s ∈ S
such that s ∨ ai ∈ s ∨ T ({ai}) ⊆ P for some i ∈ {1, · · · , n}. For the converse, take
n = 2. □

Let S be a join subset of L. We say that S is a strongly join subset if for each
family {si}i∈I of elements of S we have (∩i∈IT ({si})) ∩ S ̸= ∅ [15, 16].

Theorem 4.2. Suppose that S is a strongly join subset of L and let {Pi}i∈I be
a chain of S-F -prime filters of L. Then P = ∩i∈IPi is an S-F -prime filter of L.

Proof. For each i ∈ I, there exists si ∈ S such that for all x, y ∈ L with
x ∨ y ∈ Pi − (Pi ∨ F ) (so x ∨ y /∈ F ) we have si ∨ x ∈ Pi or si ∨ y ∈ Pi. Consider
s ∈ (∩i∈IT ({si})) ∩ S, as (∩i∈IT ({si})) ∩ S ̸= ∅. Then for each i ∈ I, s = si ∨ ai,
where ai ∈ L. Now, it suffices to show that for all x, y ∈ L such that x ∨ y ∈
P − (P ∨F ) we have s∨ x ∈ P or s∨ y ∈ P , i.e. P is S-F -prime. Let a, b ∈ L such
that a ∨ b ∈ P − (P ∨ F ) and suppose that s ∨ a /∈ P . Then s ∨ a /∈ Pj for some
j ∈ I. Let k ∈ I. Then Pk ⊆ Pj or Pj ⊆ Pk. We split the proof into two cases.

Case 1: Pk ⊆ Pj . Since s ∨ a /∈ Pj , we infer that s ∨ a = sk ∨ ak ∨ a /∈ Pk; so
sk ∨ a /∈ Pk. Clearly, a ∨ b ∈ Pj − (Pj ∨ F ). This shows that sk ∨ b ∈ Pk; hence
sk ∨ ak ∨ b = s ∨ b ∈ Pk. Thus, s ∨ b ∈ P .

Case 2: Pj ⊆ Pk. Since s∨ a = sj ∨ aj ∨ a /∈ Pj , we conclude that sj ∨ a /∈ Pj ;
so sj ∨ b ∈ Pj ⊆ Pk which gives s ∨ b = sj ∨ aj ∨ b ∈ Pk, and so s ∨ b ∈ P . □

Theorem 4.3. Assume that S is a join subset of L and let P be an S-F -prime
filter of L. If P is not S-prime, then P ⊆ F .

Proof. Suppose that P ⊈ F ; we show that P is S-prime. Let a, b ∈ L such
that a ∨ b ∈ P . If a ∨ b /∈ P ∨ F , Then P is an S-F -prime gives s ∨ a ∈ P or
s∨ b ∈ P for some s ∈ S. So we can assume that a∨ b ∈ P ∨F . By the hypothesis,
there exists p ∈ P such that p /∈ F which implies that p∧ (a∨ b) ∈ P − (P ∨F ) by
Lemma 2.1 (1). Since (p ∧ a) ∨ (p ∧ b) = p ∧ (a ∨ b) ∈ P − (P ∨ F ), we conclude
that there is an element t ∈ S such that t ∨ (p ∧ a) = (t ∨ p) ∧ (t ∨ a) ∈ P or
t∨ (p∧ b) = (t∨p)∧ (t∨ b) ∈ P which implies that t∨a ∈ P or t∨ b ∈ P by Lemma
2.1 (1), i.e. P is S-prime. □

Corollary 4.3. Let P be an S-{1}-prime filter of L. If P is not an S-prime
filter, then P = {1}.

Proof. This is a direct consequence of Theorem 4.3. □

Corollary 4.4. Let P be an S-F -prime filter of L. If P ⊈ F , then P is an
S-prime filter of L.

Proof. This is a direct consequence of Theorem 4.3. □

We continue this section with the investigation of the stability of S-F -prime
filters in various lattice-theoretic constructions.
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Theorem 4.4. Let v : L → L′ be a lattice homomorphism such that v(1) = 1
and v(0) = 0. Suppose that S is a join subset of a complemented lattice L. If v is
a epimorphism and P is a S-F -prime filter of L with Ker(v) ⊆ P , then v(P ) is a
v(S)-v(F )-prime filter of L′.

Proof. Clearly, v(P ), v(F ) are filters of L′ and v(S) is a join subset of L′. If
v(S) ∩ v(P ) ̸= ∅, then v(s) = v(q) for some s ∈ S and q ∈ P . By assumption,
there exists q′ ∈ L such that q ∨ q′ = 1 and q ∧ q′ = 0. Therefore, v(s ∨ q′) =
v(q)∨v(q′) = v(1) = 1 gives s∨q′ ∈ Ker(v) ⊆ P . Since P is a filter, we conclude that
(s∨ q)∧ (s∨ q′) = s ∈ P ∩S, a contradiction. Thus, v(S)∩ v(P ) = ∅. Let x, y ∈ L′

such that x∨ y ∈ v(P )− v(P )∨ v(F ) = v(P )− v(P ∨F ). Then there exist a, b ∈ L
such that x = v(a), y = v(b) and v(a∨b) = x∨y ∈ v(P )−v(P ∨F ); so a∨b /∈ P ∨F
and v(a ∨ b) = v(p) for some p ∈ P . By the hypothesis, p ∨ p′ = 1 and p ∧ p′ = 0
for some p′ ∈ L. Since v(a∨ b∨ p′) = v(a∨ b)∨ v(p′) = v(1) = 1, we conclude that
a∨b∨p′ ∈ Ker(v) ⊆ P . As a∨b = (a∨b)∨(p∧p′) = (a∨b∨p)∧(a∨b∨p′) ∈ P−(P∨F ),
we infer that there exists s ∈ S such that s ∨ a ∈ P or s ∨ b ∈ P which implies
that v(s) ∨ x = v(s ∨ a) ∈ v(P ) or v(s) ∨ y = v(s ∨ b) ∈ v(P ), i.e. v(P ) is a
v(S)-v(F )-prime filter of L′. □

Theorem 4.5. Let v : L → L′ be a lattice homomorphism such that v(1) = 1
and v(0) = 0. Suppose that S is a join subset of a lattice L and let v(F ) be a
filter of L′. If v is a monomorphism and P ′ is a v(S)-v(F )-prime filter of L′, then
v−1(P ′) is a S-F -prime filter of L.

Proof. Set P = v−1(P ′). It is clear that P ∩ S = ∅. Let a, b ∈ L such that
a ∨ b ∈ P − (P ∨ F ). If v(a ∨ b) ∈ v(F ), then v(a ∨ b) = v(f) for some f ∈ F ; so
a ∨ b = f ∈ P ∨ F since v is injective, a contradiction. Thus, v(a ∨ b) /∈ P ′ ∨ v(F ).
Now, since v(a ∨ b) = v(a) ∨ v(b) ∈ P ′ − P ′ ∨ v(F ) and P ′ is a v(S)-v(F )-prime
filter, we infer that there exists s ∈ S such that v(s) ∨ v(a) = v(s ∨ a) ∈ P ′ or
v(s) ∨ v(b) = v(s ∨ b) ∈ P ′. Hence, s ∨ a ∈ P or s ∨ b ∈ P , and so v−1(P ′) is a
S-F -prime filter of L. □

Corollary 4.5. Let S be a join subset of L. If L is a sublattice of L′ and P ′

is a S-F -prime filter of L′, then P ′ ∩ L is a S-F -prime filter of L.

Proof. It suffices to apply Theorem 4.5 to the natural injection ι : L → L′

since ι−1(P ′) = P ′ ∩ L and ι(S) = S. □

An element x of L is called identity join of a lattice L, if there exists 1 ̸= y ∈ L
such that x ∨ y = 1. The set of all identity joins of a lattice L is denoted by I(L).
Suppose that G is a filter of L and let S be a join subset of L. An easy inspection
will show that SQ(G) = {s ∧G : s ∈ S} is a join subset of L/G.

Proposition 4.3. Assume that P is a filter of L and let S be a join subset
of L disjoint with P such that SQ(F ) ∩ I(L/F ) = ∅. The following assertions are
equivalent:

(1) P is an S-F -prime filter of L;
(2) (P :L s) is an F -prime filter of L for some s ∈ S.
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Proof. (1) ⇒ (2) Since P is an S-F -prime filter, we conclude that there is an
element s ∈ S such that for all x, y ∈ L with x∨ y ∈ P − (P ∨F ) we have s∨x ∈ P
or s ∨ y ∈ P . Now, we show that (P :L s) is an F -prime filter of L. Let x, y ∈ L
such that x∨y ∈ (P :L s)−((P :L s)∨F ). Then x∨y /∈ F gives (x∨y)∧F ̸= 1∧F .
If x ∨ y ∨ s ∈ F , then ((x ∨ y) ∧ F ) ∨Q (s ∧ F ) = 1 ∧ F by [12, Remark 4.2] gives
s∧F ∈ SQ(F )∩ I(L/F ) which is impossible. So we may assume that x∨ y∨ s /∈ F .
Therefore, x ∨ y ∨ s ∈ P − (P ∨ F ) gives x ∨ s ∨ s = x ∨ s ∈ P or y ∨ s ∈ P which
means that x ∈ (P :L s) or y ∈ (P :L s). Thus (P :L s) is an F -prime filter of L.

(2) ⇒ (1) Suppose that (P :L s) is an F -prime filter of L for some s ∈ S and
let a, b ∈ L such that a ∨ b ∈ P − (P ∨ F ) (so a ∨ b /∈ F and a ∨ b ∨ s ∈ P ). Since
SQ(F )∩I(L/F ) = ∅, we conclude that a∨b∨s /∈ F ; so a∨b ∈ (P :L s)−((P :L s)∨F ).
Now, (P :L s) is an F -prime gives s ∨ a ∈ P or s ∨ b ∈ P , as required. □

In the following theorem, we give a condition under which the F -prime and the
S-F -prime filters coincide.

Theorem 4.6. Assume that P is a filter of L and let S be a join subset of
L disjoint with P such that SQ(F ) ∩ I(L/F ) = ∅ = SQ(P ) ∩ I(L/P ). Then P is
F -prime if and only if P is S-F -prime.

Proof. One side is clear. To see the other side, it is enough to show that
P = (P :L s) for all s ∈ S by Proposition 4.3. Since the inclusion P ⊆ (P :L s)
is clear, we will prove the reverse inclusion. Let s ∈ S and x ∈ (P :L s). Then
s∨x ∈ P gives (s∧P )∨Q (x∧P ) = (s∨x)∧P = 1∧P . Since SQ(P )∩ I(L/P ) = ∅,
we conclude that x ∧ P = 1 ∧ P ; so x ∈ P by [12, Remark 4.2], and so we have
equality. □

Theorem 4.7. Assume that G is a filter of L and let S be a join subset of L.
Let P be a proper filter of L containing G such that (P/G) ∩ SQ(G) = ∅. Then P
is an S-F -prime filter of L if and only if P/G is an SQ(G)-FQ(G)-prime filter of
L/G.

Proof. Let P be an S-F -prime filter of L. Then there exists s ∈ S such
that for all x, y ∈ L, if x ∨ y ∈ P − (P ∨ F ), then s ∨ x ∈ L or s ∨ y ∈ L. Let
a∧G, b∧G ∈ L/G such that (a∧G)∨Q (b∧G) = (a∨b)∧G ∈ P/G−(P/G)∨FQ(G)
(so (a∨ b)∧G /∈ FQ(G) gives a∨ b /∈ F ) which implies that a∨ b ∈ P − (P ∨F ) by
[12, Lemma 4.3]; hence s∨ a ∈ P or s∨ b ∈ P . Therefore (s∧G)∨Q (a∧G) ∈ P/G
or (s ∧G) ∨Q (b ∧G) ∈ P/G. Thus P/G is an SQ(G)-FQ(G)-prime filter of L/G.

Conversely, if P ∩ S ̸= ∅, then (P/G) ∩ SQ(G) ̸= ∅ which is a contradiction.
Thus, S ∩ P = ∅. Since P/G is an SQ-FQ(G)-prime filter of L/G, we conclude
that there exists s ∈ S such that for all x ∧ G, y ∧ G ∈ L/G with (x ∧ G) ∨Q

(y ∧ G) ∈ P/G − (P/G) ∨ FQ(G), we infer that (s ∧ G) ∨Q (x ∧ G) ∈ P/G or
(s ∧G) ∨Q (y ∧G) ∈ P/G. Now, let a, b ∈ L such that a ∨ b ∈ P − (P ∨ F ). Then
(a ∧ G) ∨Q (b ∧ G) ∈ P/G − (P/G) ∨ FQ(G) gives (s ∧ G) ∨Q (a ∧ G) ∈ P/G or
(s ∧G) ∨Q (b ∧G) ∈ P/G; hence s ∨ a ∈ P or s ∨ b ∈ P , i.e. the result holds. □
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Theorem 4.8. Let L = L1 × L2 be a decomposable lattice, P = P1 × P2,
F = F1 ×F2 and S = S1 ×S2, where Pi, Fi are filters of Li and Si is a join subset
of Li, i = 1, 2. Then the following hold:

(1) If Pi is a proper filter of Li with Pi ⊆ Fi, i = 1, 2, then P is an S-F -filter
of L;

(2) If P1 is an S1-F1-prime filter of L1 and F2 = L2, then P1 × L2 is an
S-F -filter of L;

(3) If P2 is an S2-F2-prime filter of L2 and F1 = L1, then L1 × P2 is an
S-F -filter of L.

Proof. (1) Since P1 × P2 − (P1 × P2) ∨ (F1 × F2) =

P1 × P2 − (P1 ∨ F1)× (P2 ∨ F2) = P1 × P2 − P1 × P2 = ∅,

we infer that P = P1 × P2 is an S-F -prime.
(2) Suppose that P1 is a S1-F1-prime filter of L1 and F2 = L2. If

(a, b) ∨c (c, d) = (a ∨ c, b ∨ d) ∈ P1 × L2 − (P1 × L2) ∨ (F1 × L2) =

P1 × L2 − (P1 ∨ F1) × L2 = (P1 − P1 ∨ F1) × L2 for some (a, b), (c, d) ∈ L, then
a∨ c ∈ P1− (P1 ∨F1) gives there exists s1 ∈ S1 such that s1 ∨a ∈ P1 or s1 ∨ c ∈ P1

which implies that (s1, 0) ∨c (a, b) ∈ P1 × L2 or (s1, 0) ∨c (c, d) ∈ P1 × L2, where
(s1, 0) ∈ S; so P1 × L2 is S-F -prime.

(3) The proof is similar to that in case (2) and we omit it. □

Theorem 4.9. Let L = L1 × L2 be a decomposable lattice, P = P1 × P2,
F = F1 ×F2 and S = S1 ×S2, where Pi, Fi are filters of Li and Si is a join subset
of Li, i = 1, 2. If P is an S-F -prime filter of L, then P1 is an S1-F1-prime filter
of L1 and P2 ∩ S2 ̸= ∅ or P2 is an S2-F2-prime filter of L2 and P1 ∩ S1 ̸= ∅ or P1

is an S1-F1-prime filter of L1 and P2 is an S2-F2-prime filter of L2.

Proof. Suppose that P is an S-F -prime filter of L. Then we keep in mind
that there exists a fixed s = (s1, s2) ∈ S that satisfies the S-F -prime condition.
Since P ∩S = (P1 ∩S1)× (P2 ∩S2) = ∅, we have either P1 ∩S1 = ∅ or P2 ∩S2 = ∅.
If P1 ∩ S1 ̸= ∅, we will show that P2 is an S2-F2-prime filter of L2. Let x ∨ y ∈
P2− (P2∨F2) for some x, y ∈ L2 (so x∨y /∈ F2). Then (1, x)∨c (1, y) = (1, x∨y) ∈
P − (P ∨ F ) gives s ∨c (1, x) = (1, s2 ∨ x) ∈ P or s ∨c (1, y) = (1, s2 ∨ y ∈ P . This
shows that s2 ∨ x ∈ P2 or s2 ∨ y ∈ P2. Hence, P2 is an S2-F2-prime filter of L2.
Similarly, if P2 ∩ S2 ̸= ∅, then P1 is an S1-F1-prime filter of L1. Now assume that
P1 ∩ S1 = ∅ = P2 ∩ S2. We will show that P1 is an S1-F1-prime filter of L1 and
P2 is an S2-F2-prime filter of L2. Suppose that P1 is not an S1-F1-prime filter of
L1. Then there exist a, b ∈ L1 such that a ∨ b ∈ P1 − (P1 ∨ F1) (so a ∨ b /∈ F1)
but s1 ∨ a /∈ P1 and s1 ∨ b /∈ P1. Then (a, 0) ∨c (b, 1) = (a ∨ b, 1) ∈ P − (P ∨ F )
gives s ∨c (a, 0) = (s1 ∨ a, s2) ∈ P or s ∨c (b, 1) = (s1 ∨ b, 1) ∈ P ; so s1 ∨ a ∈ P1 or
s1 ∨ b ∈ P1 which is a contradiction. Therefor, P1 is an S1-F1-prime filter of L1.
Similarly, P2 is an S2-F2-prime filter of L2. □

Let S be a join subset of L. We say that a filter G of L is S-finite if s ∨ G ⊆
K ⊆ G for some finitely generated filter K of L and some s ∈ S. We say that L
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is S-Noetherian if each filter of L is S-finite [2, 15, 16]. The proof of the following
lemma can be found in [16, Lemma 2.20], but we give the details for convenience.

Lemma 4.1. Suppose that S is a join subset of L and let P be a filter of L
which is maximal among all non-S-finite filters of L. Then P is a F -prime filter
of L.

Proof. Clearly, L is S-finite. Since every prime filter is F -prime by Example
3.2 (2), it suffices to show that P is prime. If P is not prime, let a, b /∈ P with
a ∨ b ∈ P . Since P ⫋ P ∧ T ({a}) and P ⫋ (P :L a), we conclude that there exist
s, t ∈ S, p1, · · · , pn ∈ P , b1, · · · , bn ∈ L and c1, · · · , ck ∈ (P :L a) such that s∨ (P ∧
T ({a}) ⊆ T (B) and t∨(P :L a) ⊆ T (C), where B = {p1∧(a∨b1), · · · , pn∧(a∨bn)}
and C = {c1, · · · , ck}. Now, let x ∈ P . Then s ∨ x ∈ s ∨ P ⊆ s ∨ (P ∧ T ({a}))
gives s ∨ x = ∧n

i=1(s ∨ x ∨ pi) ∧ (∧n
i=1(s ∨ x ∨ a ∨ bi)); so y = ∧n

i=1(s ∨ x ∨ bi) ∈
(P :L a). It follows that t ∨ y = ∧k

i=1(t ∨ y ∨ ci) ∈ (P :L a). Therefore, s ∨ x ∨ t =
∧n
i=1(s ∨ x ∨ pi ∨ t) ∧ (∧k

i=1(a ∨ ci ∨ t ∨ y)). Hence, (s ∨ t) ∨ P ⊆ T (D) ⊆ P , where
D = {p1 ∨ t, · · · , pn ∨ t, a ∨ c1, · · · , a ∨ ck} ⊆ P ; so P is S-finite, a contradiction.
Thus, P is a prime filter of L. □

Let F(L) be the set of all filters of L.

Proposition 4.4. Let S be a join subset of L. Then L is S-Noetherian if and
only if every F -prime filter of L (disjoint from S) is S-finite.

Proof. One side is clear. To see the other side, assume that every F -prime
filter P of L with P ∩ S = ∅ is S-finite. On the contrary, suppose That L is not
S-Noetherian. Then the set Ω = {G ∈ F(L) : G is non-S-finite} is not empty.
Moreover, (Ω,⊆) is a partial order. It is easy to see that Ω is closed under taking
unions of chains and so Ω has at least one maximal element by Zorn’s Lemma,
say P . Then Lemma 4.1 shows that P is an F -prime filter. If P ∩ S ̸= ∅, then
s ∨ P ⊆ T ({s}) ⊆ P for every s ∈ P ∩ S gives P is S-finite, a contradiction. Thus
P ∩ S = ∅. Now, by the hypothesis, P is S-finite which is impossible since P ∈ Ω.
Thus L is S-Noetherian. □

We obtain the following S-version of Cohen’s Theorem [8].

Theorem 4.10. Let S be a join subset of L. The following assertions are
equivalent:

(1) L is S-Noetherian;
(2) Every S-F -prime filter of L is S-finite;
(3) Every F -prime filter of L is S-finite.

Proof. (1) ⇒ (2) This is clear.
(2) ⇒ (3) Let P be an F -prime filter of L. If P∩S ̸= ∅, then s∨P ⊆ T ({s}) ⊆ P

for every s ∈ P ∩ S gives P is S-finite. If P ∩ S = ∅, then P is an S-F -filter of L
by Example 4.1 (2); so by (2), P is S-finite.

(3) ⇒ (1) Follows from Proposition 4.4. □
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