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PERSISTENCE SETUP - A SURVEY
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Abstract. Persistent homology is one of the main tools of topological data

analysis. It measures the topological properties of shapes through filtrations.
In this paper, we review the concepts of persistence and we demonstrate the

process of obtaining the persistent analogs of computational tools of homology.

In particular, the Mayer-Vietoris sequence, the long exact sequence and the
excision theorem. We provide new examples to emphasise the difficulties in

the process, and the creativity exhibited by the researchers to overcome these

difficulties. And we give an alternative proof for the excision theorem.

1. Introduction

Topological Data Analysis (TDA) is a branch of mathematics which makes use
of topological methods and invariants to analyse shapes of datasets. One of the
core tools used in this research area is persistent homology. It is an algebraic tool
which measures topological properties of shapes. The concept is first introduced
by Edelsbrunner, Letscher and Zomorodian in 2002 [7]. The authors point out all
possible difficulties of extracting topological information from shapes and reducing
it to actual topological features by removing the noise, and they demonstrate how to
overcome these difficulties. In 2005, new computation methods and new algorithms
which are suitable for arbitrary coefficients arise [15]. In 2005, barcodes, as a tool
for visualising persistence, appears [2]. In 2008, Ghrist gives a detailed survey of
barcodes [8]. More tools for visualisation of persistent homology get introduced in
the following years such as persistence diagrams [6] and persistence landscape [1].
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At the same time, researchers work on applications of this new concept. Sensor
network coverage [3], breast cancer identification [10], machine learning [12], image
processing [5] are among examples. Even though persistent homology is a relatively
young research area, it takes place in many applications due to the already existing
strengths of homology: computability and reliability.

A natural question is, how far can homological properties be extended to per-
sistence setup? In 2011, Di Fabio and Landi show that a Mayer-Vietoris sequence
can be constructed in persistence homology but the sequence is not exact [4]. Even
without the exactness, this sequence is useful in applications as the authors demon-
strate. In 2018, Varli, Yılmaz and Pamuk show that a long sequence is also con-
structable at the cost of losing the exactness [14]. But the authors also show that
trying a new approach with a different algebraic structure provides the exactness
of both sequences. In 2019, Palser gives an excision theorem for persistence and
shows that it holds for both persistent homology groups and modules [11].

This paper is a survey of the process of creating persistent homological proper-
ties based on homological properties. The paper is organized as follows. In Section
2, we start with a brief review of homology. Then we give the Mayer-Vietoris se-
quence, long exact sequence of a pair, and the excision theorem of homology which
are discussed in persistence setup in the further sections. In Section 3, we follow
up with a review of the persistent homology. We mention the central objects, fil-
trations, in persistence and we compute the persistent homology groups of these
objects. In Section 4, we review the attempts of carrying homological properties
given in Section 2 to the persistent homology. We provide examples demonstrating
the difficulties that came out of these attempts for each of the homology sequences
mentioned above. Then we see how these difficulties are overcome by making use of
another algebraic structure, persistence modules, and trying a different approach
to these sequences. We give an alternative proof for Palser’s excision theorem in
persistent homology and end the section with an example case where we verify the
theorem.

2. Homology

2.1. Homology groups. We start with a general definition of a chain com-
plex and its homology.

Definition 2.1. A sequence C consisting of abelian groups Cn and homomor-
phisms ∂n : Cn → Cn−1, n ∈ Z,

C : · · · −→ Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1 −→ · · ·

such that ∂n ◦ ∂n+1 = 0 for all n ∈ Z is called a chain complex.

For all n ∈ Z, the abelian group Cn is called the nth chain group. The ele-
ments of ker(∂n) are called n-cycles and this subgroup is denoted by Zn(C), and
the elements of im(∂q+1) are called n-boundaries and this subgroup is denoted by
Bn(C).
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Definition 2.2. Let C be a chain complex. The quotient group

Hn(C) = Zn(C)/Bn(C) = ker(∂n)/im(∂n+1)

is called the nth homology group of C.

There are ways of deriving the abelian groups Cn of the chain complexC from a
topological space X, for n ⩾ 0. In that case, we denote the chain complex obtained
from X by C(X), and it takes the form,

· · · ∂n+1−−−→ Cn(X)
∂n−→ Cn−1(X)

∂n−1−−−→ · · · ∂2−→ C1(X)
∂1−→ C0(X)

∂0−→ 0

where C−1(X) is defined to be trivial. The nth homology group of X is denoted
by Hn(X). One of the most common examples of this construction is singular
homology. We refer the reader to [9] for details of this homology theory.

Another homology theory is based on simplicial complexes, and it is called
simplicial homology. A simplicial complex is a finite set consisting of simplicies,
which are convex sets spanned by affine independent points in Rn, such that either
two simplicies intersect in a face belonging to both simplicies, or they are disjoint.
For computational purposes, simplicial homology is commonly used in persistent
homology. Thus, we briefly mention simplicial homology at this point.

2.2. Simplicial homology. In this homology theory, the nth chain groups
of the chain complex are the free abelian groups generated by n-simplicies in an
oriented simplicial complex K, and denoted by Cn(K). A typical element of Cn(K)
is of the form ∑

q

cqσq,

where cq ∈ Z, and σq ∈ K is an n-simplex.

Definition 2.3. [13] The boundary homomorphism ∂q : Cq(K) → Cq−1(K)
is defined for any q-simplex σ = [p0, ..., pq] in Cq(K) as

∂qσ =

q∑
i=0

(−1)i[p0, ..., p̂i, ..., pq],

where p̂i means removing the vertex pi.

The boundary homomorphism has the following important property. The
boundary of a boundary is zero.

Theorem 2.1. [13] ∂q−1∂q = 0 for q ⩾ 1.

Then, from an n-dimensional simplicial complex K, the following chain complex
is obtained,

· · · −→ 0
∂n+1−−−→ Cn(K)

∂n−→ Cn−1(K)
∂n−1−−−→ · · · ∂2−→ C1(K)

∂1−→ C0(K)
∂0−→ 0.

The nth homology group of a simplicial complex K is

Hn(K) = Zn(K)/Bn(K) = ker(∂q)/im(∂q+1).
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Throughout the paper, < σ1, σ2, ..., σn > denotes the free abelian group generated
by simplicies σ1, σ2, ..., σn. A generator z +Bn(K) of Hn(K) is denoted by z. And
the group of coefficients taken into account in homology computations is Z.

Simplicial complexes can be used to represent topological spaces. The term
that describes the representation is triangulation. Not all topological spaces are
triangulable. But for triangulable ones, the simplicial homology of a simplicial
complex representing a topological space X agrees with the singular homology of
X.

Homology groups carry significant information about the topological space they
are derived from. In particular, the nth homology group reveals information about
the number of connected components of the space when n = 0, and the number
of n-dimensional holes in the space when n > 0. Throughout the paper, we make
use of this geometric interpretation of homology groups when its needed to reduce
the amount of computations. We label the connected components in a topological
space (simplicial complex) and use these labels as representers of generators in 0th
homology group. Similarly, we use labels for n-dimensional holes in the space (or
complex) and these labels represent the generators of the nth homology group.

2.3. Relative homology. For a subspace A of a topological space X, we
form a quotient group Cn(X)/Cn(A), and denote it by Cn(X,A). This is the nth
relative chain group of the pair (X,A). The boundary maps between these relative
chain groups are induced by the ones between the chain groups of X. We have the
following chain complex

· · · −→ Cn(X,A)
∂n−→ Cn−1(X,A)

∂n−1−−−→ · · · ∂2−→ C1(X,A)
∂1−→ C0(X,A)

∂0−→ 0.

Definition 2.4. [9] Let A be a subspace of a topological space X. The nth
relative homology group of the pair (X,A) is defined as

Hn(X,A) = ker(∂n)/im(∂n+1).

By forming these quotient groups, we ignore the topological data contained in
the subspace A. By choosing A properly, we can reduce the amount of work needed
to obtain the desired information about the space.

Next, we give three tools for homology computations consisting of two exact
sequences and a theorem.

2.4. Mayer-Vietoris sequence.

Definition 2.5. [9] Let A and B be subspaces of a topological space X such
that X = Ao ∪Bo. Then, there is an exact sequence of homology groups

· · · −→ Hn(A ∩B)
(i1∗ ,i2∗ )−−−−−→ Hn(A)⊕Hn(B)

j1∗−j2∗−−−−−→ Hn(X)
d−→ Hn−1(A ∩B) −→ · · ·,

where i1∗ , i2∗ , j1∗ , j2∗ are all induced by inclusion maps and d is the connecting
homomorphism.

One can simplify homology computations of X by choosing A and B such that
the homology groups of A, B or A ∩B are trivial or easily computable, and using
the Mayer-Vietoris sequence.
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2.5. Long exact sequence of a pair. [9] Another useful tool is the long
exact sequence for the homology groups. Let A be a subspace of a topological
space X. Then we have the exact sequence

· · · −→ Hn(A)
i∗−→ Hn(X)

p∗−→ Hn(X,A)
d−→ Hn−1(A) −→ · · ·,

where i∗ and p∗ are induced by the inclusion map and the quotient map respectively,
and d is the connecting homomorphism.

2.6. The excision theorem. This theorem relates the relative homology of
a space to the relative homology of its subspaces.

Theorem 2.2. [9] Let A and B be subspaces of a topological space X such
that X = Ao ∪Bo. Then we have,

Hn(B,A ∩B) ∼= Hn(X,A),

and the isomorphism is induced by the inclusion map.

3. Persistent homology

The idea of persistence is basically keeping track of topological features in a
filtration of a topological space (or a simplicial complex) and determine the ones
that persist for a relatively long time. In this paper, the feature we are interested in
is homology. As we move forward in a filtration, homology classes are born. Some
of these classes may die soon and some may persist on staying alive for longer, or
maybe forever. We call the ones that die soon noise, and we focus on the persisting
ones.

3.1. Persistent homology for point cloud data (PCD). A data set con-
sisting of a cloud of points is called a PCD [8] (Figure 1). One of the uses of
persistent homology is obtaining a meaningful information about the space from
which a given PCD is sampled. To be able to do that, we first need a structure on
the data. Points in a PCD can be considered as 0-simplices so that a PCD can be

Figure 1. A PCD consisting of four points.

thought as a simplicial complex. Then, one can compute homology of this complex
but it would not reveal any information about the shape of the object from which
the PCD is sampled. Thus, this method is improved in the following way. For each
point in a PCD, we draw balls with equal radius d centering on the point. Then we
form simplices from the points which have intersecting balls. As d gets larger, we
obtain a nested sequence of simplicial complexes, thus a filtered complex [8] of the
given PCD. Figure 2 demonstrates an example of this process. Let the simplicial
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Figure 2. A filtration obtained from a PCD. We are interested
in d values where new simplices are born.

complexes obtained in Figure 2 be K0, ...,K7 with respect to the order in the figure.
Clearly we have

K0 ⊂ K1 ⊂ ... ⊂ K7.

K0 has four connected components. Thus H0(K0) ∼= Z4. For K1, H0(K1) ∼= Z3 as it
has only three connected components. Although it is visible, we give an algebraic
explanation of what happens as we move from K0 to K1. In K1, the boundary of
[a, b] is [b] − [a]. Thus, [a] and [b] fall in the same equivalence class in H1(K1).
So, we say that a homology class dies as we pass from K0 to K1. For K2, we have
H1(K2) ∼= Z as it contains a 1-dimensional hole. However, in K4, this hole is a
boundary of a 2-simplex. Thus, a homology class was born in K2 but then it dies
in K4.

Definition 3.1. (Persistent homology group) The nth persistent homology
group of the classes that are born before the ith complex and still alive in the jth
complex is defined as [15]

Hi,j
n (K) = im{Hn(Ki) → Hn(Kj)}.

Example 3.1. We demonstrate a few computations for the filtration in Figure
2.

H1,2
0 (K) = im{H0(K1) → H0(K2)}.
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For K1 we have

· · · → 0 → C1(K1)
∂1−→ C0(K1)

∂0−→ 0,

and C0(K1) = <[a], [b], [c], [d]>,C1(K1) = <[a, b]>. Thus we have

Z0(K1) = ker(∂0) = <[a], [b], [c], [d]>,

B0(K1) = im(∂1) = <∂1[a, b]> = <[b]− [a]>,

and

H0(K1) = <[a], [b], [c], [d]>/<[b]− [a]>.

Here we see that [b]− [a] ∈ <[b]− [a]>, so [b] +<[b]− [a]> = [a] +<[b]− [a]> and

finally [b] = [a]. We represent this class by [a]. Then

H0(K1) = <[a] +B0(K1), [c] +B0(K1), [d] +B0(K1)>.

For K2 we have

· · · → 0 → C1(K2)
∂1−→ C0(K2)

∂0−→ 0,

and C0(K2) = <[a], [b], [c], [d]>,C1(K2) = <[a, b], [a, c], [b, c]>. Thus we have

Z0(K2) = ker(∂0) = <a, b, c, d>,

B0(K2) = im(∂1) = <∂1[a, b], ∂1[a, c], ∂1[b, c])>,

= <[b]− [a], [c]− [a], [c]− [b]>,

= <[b]− [a], [c]− [a]> (since [c]− [b] is spanned by the other two),

and

H0(K2) = <[a], [b], [c], [d]>/<[b]− [a], [c]− [a]>.

Here we see that [c]− [a] ∈ <[c]− [a]>, so [c] +<[c]− [a]> = [a] +<[c]− [a]> and

finally [c] = [a] and similarly [b] = [a]. We keep using [a] to represent this class.
Then

H0(K2) = <[a] +B0(K2), [d] +B0(K2)>.

Since the map between H0(K1) and H0(K2) is induced by the composition of inclu-
sion maps, we know that for any z +B0(K1), i∗(z +B0(K1)) = z +B0(K2). Thus
we obtain

im{H0(K1) → H0(K2)} = <[a] +B0(K2), [c] +B0(K2), [d] +B0(K2)>.

We know that [c]− [a] ∈ B0(K2), so

H1,2
0 (K) = <[a] +B0(K2), [d] +B0(K2)>.

Since there are no new points added to the space as the filtration grows, the per-
sistent homology group H1,2

0 (K) and the 0th homology group of K2 happened to
be the same in this case.
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In the figure we see that both K2 and K5 have 1-dimensional holes. The one
in K2 dies in K4 and the one in K5 actually was born as we move to K5. Indeed,

H1(K2) = <[a, b] + [b, c]− [a, c] +B1(K2)>,

H1(K5) = <[a, c] + [c, d]− [a, d] +B1(K5)>,

im{H1(K2) → H1(K5)} = <[a, b] + [b, c]− [a, c] +B1(K5)>.

B1(K5)=<∂2[a, b, c]>=<[a, b]+ [b, c]− [a, c]>, and it means <[a, b]+ [b, c]− [a, c]+
B1(K5)>=<0 +B1(K5)>. Thus,

H2,5
1 (K) = 0.

It means that there are no first homology classes that survive in the filtration from
K2 to K5.

3.2. Persistent homology for real-valued functions. Another way of
forming a filtration is to consider a real-valued function f and the part of the
domain space that takes values less than or equal to some real number a. As we
increase a, we have a growing space as desired. A similar way is to consider the
part of the domain that takes values greater than or equal to a.

Definition 3.2. (Sublevel-superlevel sets) [11] Let X be a topological
space and f : X → R be a real-valued function. The sublevel and superlevel sets
of f with respect to a real number ak are defined as follows:

Xk = {x ∈ X : f(x) ⩽ ak},

Xk = {x ∈ X : f(x) ⩾ ak},

respectively.

For a0 < a1 < ... < an, we have,

X0 ⊂ X1 ⊂ · · · ⊂ Xn,

Xn ⊂ Xn−1 ⊂ · · · ⊂ X0.

In both cases, we obtain a filtration of the space.

Example 3.2. Let X be the green curve in Figure 3 and consider f : X → R
as the height function. Then the sublevel sets of X with respect to the values
a0, a1, a2, a3 form a filtration,

X0 ⊂ X1 ⊂ X2 ⊂ X3

of X as in Figure 3. X0 has only one connected component, so H0(X0) has one
generator. Let us denote its homology class by a. X1 has two connected compo-
nents, which means that we have a new 0th homology class. We call it b. As we
move to X2, these homology classes are still alive. However, in X3, there is only one
connected component. One of the homology classes dies since it falls in the same
class with the other one. We use the older representer a for this class. Observe
that the homology only changes when the horizontal line passes through a critical
point. Since there are no critical points between a1 and a2, H0(X1) ∼= H0(X2).
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Figure 3. Sublevel sets of X by f .

Homology is a homotopy invariant. Two homotopy equivalent spaces have iso-
morphic homology groups [9]. However, this property does not hold in persistence
setup. We demonstrate this with an example. In Figure 5, we have a rotated

Figure 4. Sublevel set filtration of a horizontal torus by the
height function. It consists of parts of the torus below a plane
z = z0.
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Figure 5. Sublevel set filtration of a vertical torus by the height function.

version of the torus from Figure 4. In both cases, the torus is placed on the xy-
plane and the filtration starts with the plane z = 0. Let the sublevel sets of the
spaces in figures be denoted by Xi and X

′

i , respectively, for i = 0, 1, 2, 3. Even in
the first step when the plane touches the torus, the first figure has a circle as the
first sublevel set X0 in the filtration and H1(X0) ∼= Z. In the second figure, we

have a single point as X
′

0 when the plane touches the torus. So H1(X
′

0) = 0. Thus,
the two homotopic spaces in the example will have different persistence homology
groups.

3.3. Barcodes. We compute the persistent homology for the filtrations of a
space, but obtaining an information about the space from the computation results
requires a little bit more work. We collect all information about the birth and death
steps of the homology classes and place them on a diagram. The resulting diagram
is called a barcode [2]. We form the barcode of the filtration given in Figure 2 as
follows.

The blue bars represent the lifetime of the homology classes. The red lines are
to separate the first and 2nd homology classes. Short blue bars are called noise and
ignored. Long blue bars are considered to obtain information about the features of
the space.

4. Homology sequences and theorems in persistence setup

In this section, we see how the Mayer-Vietoris sequence, the long exact sequence
of a pair, and the excision theorem of standard homology transfers to the persistence
setup. To accomplish this, it needs a change of the algebraic point of view to the
problem. Thus, the following structures are introduced.



HOMOLOGY SEQUENCES AND THEOREMS IN PERSISTENCE SETUP - A SURVEY 151

[a,c]+[c,d]-[a,d]

[a,b]+[b,c]-[a,c]

[d]

[c]

[b]

[a]
d

H0(K)

H1(K)

Figure 6. Barcode of the filtration in Figure 2.

Definition 4.1. (Persistence module) [15] Let R be a ring, and let I be
a partially ordered set. A persistent module P consists of Pi (i ∈ I), which are
modules over R, and maps ψi,k : Pi → Pk where i ⩽ k, satisfying the following
conditions.

i) ψi,i is the identity map on Pi.
ii) For any pair ψj,k : Pj → Pk and ψi,j : Pi → Pj , the composition

ψj,k ◦ ψi,j is equal to ψi,k : Pi → Pk.

Example 4.1. Consider a filtration of a topological space X,

X0
i0,1−−→ X1

i1,2−−→ · · · in−1,n−−−−→ Xn.

where ik,k+1 is the inclusion map for k = 0, 1, ..., n−1. There is an identity map for
each Xi. And the composition of inclusion maps ij+1,j+2◦ij,j+1 = ij,j+2. We apply
the functor Hk to this sequence. The identity maps are mapped to the identity
maps, Hk(iXj

) = iHk(Xj). And,

ij+1,j+2 ◦ ij,j+1 = ij,j+2

⇒ Hk(ij+1,j+2 ◦ ij,j+1) = Hk(ij,j+2)

⇒ Hk(ij+1,j+2) ◦Hk(ij,j+1) = Hk(ij,j+2)

⇒ i∗j+1,j+2
◦ i∗j,j+1

= i∗j,j+2
.

Then, the sequence

Hk(X0)
i∗0,1−−−→ Hk(X1)

i∗1,2−−−→ · · ·
i∗n−1,n−−−−−→ Hk(X)

forms a persistence module.
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Definition 4.2. Suppose we have two persistence modules P and Q over the
same index set I,

· · · Pi Pj Pk · · ·

· · · Qi Qj Qk · · · .

ψi,j

fi

ψj,k

fj fk

ϕi,j ϕj,k

If we have a family of linear maps fn : Pn → Qn such that the diagram above
commutes, then this family is called a morphism between P and Q, and it is
denoted by f : P → Q. If, in addition, each fn is an isomorphism, then f is an
isomorphism of persistence modules P and Q.

Let F be a field and F[t] be the graded polynomial ring with the standard
grading. We consider the direct sum of all Hk(Xi). By defining the operation

t(z0, z1, z2, ...) =
(
0, i∗0,1

(z0), i∗1,2
(z1), i∗2,3

(z2)...
)
,

we obtain an F[t]-module structure of the persistence module and denote it by

Hk(X) =
⊕
i

Hk(Xi). [15]

We bring the kth homology groups of all subspaces in the filtration together and
form a graded module structure. Each time we apply t, we move one step upward
in the grading. It means a one step shift of the birth time and the death time of a
homology class.

4.1. Mayer-Vietoris sequence. To build a structure for Mayer-Vietoris se-
quence in persistent homology, we begin with some observations. Let X be a
topological space and A,B ⊂ X such that X = Ao ∪Bo. We consider filtrations of
A and B such that,

Xj = Aj ∪Bj ,
(A ∩B)j = Aj ∩Bj .

For a step j in the filtration, we consider the nth homology group of Xj , Aj , Bj
and (A ∩B)j . We have the Mayer-Vietoris sequence

· · · → Hn((A ∩B)j) → Hn(Aj)⊕Hn(Bj) → Hn(Xj) → Hn−1((A ∩B)j) → · · · .
Also, consider the Mayer-Vietoris sequence at step k where j < k,

· · · → Hn((A ∩B)k) → Hn(Ak)⊕Hn(Bk) → Hn(Xk) → Hn−1((A ∩B)k) → · · · .
We connect these sequences vertically by the maps induced by the inclusion maps
in the filtrations.

· · · Hn((A ∩B)j) Hn(Aj)⊕Hn(Bj) Hn(Xj) Hn−1((A ∩B)j) · · ·

· · · Hn((A ∩B)k) Hn(Ak)⊕Hn(Bk) Hn(Xk) Hn−1((A ∩B)k) · · · .

αj

i1∗n

βj

i2∗n

dj

i3∗n
i1∗n−1

αk βk dk
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Consider, say, im(i3∗n
) = im{Hn(Xj) → Hn(Xk)}. This is exactly the definition of

the persistent homology group Hj,k
n (X). The same is true for each column above.

If we restrict αk, βk and dk to the images of the vertical maps, then we have the
following sequence of persistent homology groups [4],

· · · → Hj,k
n (A ∩B)

α−→ Hj,k
n (A)⊕Hj,k

n (B)
β−→ Hj,k

n (X)
d−→ Hj,k

n−1(A ∩B) → · · · .
This sequence is a chain complex, but it is not exact in general. We demonstrate
it with an example.

Example 4.2. Consider Figure 5, where we form the sublevel sets of the torus.
Let X be the torus and pick A and B as in Figure 7 such that X = Ao ∪Bo holds.

X A B A ∩B

Figure 7. A topological space X, and its subspaces A,B and A ∩B.

Xj Aj Bj (A ∩B)j

Xk Ak Bk (A ∩B)k

a = ak

a = aj

Figure 8. Sublevel sets of X,A,B and A ∩B for aj and ak.

For a = aj and a = ak, form a two step sublevel set filtration of spaces X, A,
B, and A∩B as in Figure 8. In the aj sublevel sets, Aj ∩Bj has two 1-dimensional
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holes. So H1((A ∩ B)j) has two generators. Call them a and b. Xj does not have
any enclosed voids, which means H2(Xj) is trivial. Aj has one 1-dimensional hole,
thus one generator for H1(Aj) since a and b are the same classes at this step. We
use a to represent this homology class. As Bj and (A ∩ B)j are homeomorphic,
H1(Bj) = <a, b>. H1((A ∩ B)k) and H1(Ak) are the same as H1((A ∩ B)j) and
H1(Aj) as the spaces remain the same in this step. H1(Bk) is <a> as a and b are
the same classes. And H2(Xk) has one generator since it has an enclosed void. Call
this generator c. With these observations, we form the persistent homology groups
by considering the homology classes that were alive at step j and remain alive at
step k. Then we have the sequence

· · · → Hj,k
2 (X)

d−→ Hj,k
1 (A ∩B)

α−→ Hj,k
1 (A)⊕Hj,k

1 (B)
β−→ Hj,k

1 (X) → · · · ,
which also could be expressed as

· · · → 0
d−→ <a, b>

α−→ <a>⊕<a>
β−→ <a>→ · · · .

In this sequence im(d)=0. But since α(b) = 0, we see that b ∈ ker(α). It means
im(d) ̸=ker(α). Thus, the sequence is not exact.

To overcome this problem and obtain an exact sequence, instead of considering
persistent homology groups, we consider persistent homology modules.

· · · → Hk(A ∩B)
α−→ Hk(A)⊕Hk(B)

β−→ Hk(X)
d−→ Hk−1(A ∩B) → · · · .

Here we define

α = (α0, α1, ..., αn),

β = (β0, β1, ..., βn),

and d = (d0, d1, ..., dn).

where αi, βi and di are the maps of the Mayer-Vietoris sequence at step i. Since
the Mayer-Vietoris sequence is exact for each step i, we have

im(αi) = ker(βi),

im(βi) = ker(di),

and im(di) = ker(αi).

For each i ∈ {0, ..., n}, the equalities above hold. We combine these with how we
define α, β and d and obtain,

im(α) = ker(β),

im(β) = ker(d),

and im(d) = ker(α),

which means that the Mayer-Vietoris sequence of persistent homology modules is
exact [14]. We show how this approach solves the problem that we face in the
above example. Consider the whole filtration of the torus as in Figure 9. aj and
ak in our example correspond to a2 and a4 here, respectively.
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a = a0

a = a1

a = a2

a = a3

a = a4

X0 A0 B0 (A ∩B)0

X1 A1 B1 (A ∩B)1

X2 A2 B2 (A ∩B)2

X3 A3 B3 (A ∩B)3

X4 A4 B4 (A ∩B)4

Figure 9. A filtration of X,A,B and A ∩B.

First, we give an example of an element of H1(B). Consider the first homology
groups of all Bi in the filtration in a direct sum. Then, we have examples of elements
such as,

(0, 0, a, 0, 0) ∈ H1(B) or (0, 0, b, 0, 0) ∈ H1(B).

The problematic homology class in the example was the class b and it occurs in step
j = 2 and it is an element of ker(α). In the persistent module, the corresponding
element is (0, 0, b, 0, 0). Considering the definition of the map α in module setup,
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we see that,

α((0, 0, b, 0, 0)) = ((0, 0, 0, 0, 0), (0, 0, b, 0, 0)) ∈ H1(A)⊕H1(B),

which means this element is not in ker(α) anymore. If we apply t two times, then
we have,

t2(0, 0, b, 0, 0) = (0, 0, 0, 0, b),

so, this element is in ker(α) as

α((0, 0, 0, 0, b)) = ((0, 0, 0, 0, 0), (0, 0, 0, 0, 0)),

and we are at step k = 4. We see that X has an enclosed void at step 4. So, H2(X)
has c as a generator. In the module setup, we have an element

(0, 0, 0, 0, c).

We take the image of this element under the map d and obtain,

d((0, 0, 0, 0, c)) = (0, 0, 0, 0, b),

because the Mayer-Vietoris sequence in the last step gives us d4(c) = b. Thus, the
exactness of the sequence is preserved.

4.2. The long exact sequence. We follow a similar procedure to form a long
exact sequence of persistent homology. Consider a topological space X, a subspace
A ⊂ X, the pair (X,A), and the filtrations of these spaces. For the steps j and k
of a filtration where j < k, we have the long exact sequences and we have the maps
induced by inclusion maps to connect these sequences,

· · · Hn(Aj) Hn(Xj) Hn(Xj , Aj) Hn−1(Aj) · · ·

· · · Hn(Ak) Hn(Xk) Hn(Xk, Ak) Hn−1(Ak) · · · .

γj

i1∗n

δj

i2∗n

dj

i3∗n
i1∗n−1

γk δk dk

We consider the images of vertical maps and obtain the persistent homology groups
of the spaces. Defining the maps γ, δ and d as restrictions of γk, δk and dk to the
images of the vertical maps, we have the following sequence [14]

· · · −→ Hj,k
n (A)

γ−→ Hj,k
n (X)

δ−→ Hj,k
n (X,A)

d−→ Hj,k
n−1(A) −→ · · · .

This sequence is a chain complex. However, for the same reason as the Mayer-
Vietoris sequence of the persistent homology groups, it is not exact. At step k
we have the exactness of the kth horizontal sequence, but it is not always the case
when the maps γ, δ and d of step k are restricted to the images of the vertical maps.

Example 4.3. Consider the case given in Figure 10. We compute the homology
groups as,

H1(Xj/Aj) = 0, H0(Aj) = <a, b>, H0(Xj) = <a, b>,

H1(Xk/Ak) = <U, V >, H0(Ak) = <a, b>, H0(Xk) = <a>.
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U V

a

b

a

b

a

b

a

b

a

b

a

b

a

a

a

Xk Ak Xk/Ak

Xj Aj Xj/Aj

X A X/A

a = ak

a = aj

Figure 10. Sublevel sets at aj , ak of X,A and X/A.

We form the persistent homology groups as follows :

· · · −→ Hj,k
1 (X,A)

γ−→ Hj,k
0 (A)

δ−→ Hj,k
0 (X)

d−→ · · · ,

which also could be expressed in the following form since in this case we have
H1(X,A) ∼= H1(X/A):

· · · −→ 0
γ−→ <a, b>

δ−→ <a>
d−→ · · · .

We see that ker(δ) = <b> ̸= 0 = im(γ), and therefore the sequence is not exact.
We change the approach as in the Mayer-Vietoris sequence case, and use persistent
homology modules. Consider the sequence

· · · −→ Hn(A)
γ−→ Hn(X)

δ−→ Hn(X,A)
d−→ Hn−1(A) −→ · · · ,

where

γ = (γ0, γ1, ..., γn),

δ = (δ0, δ1, ..., δn),

and d = (d0, d1, ..., dn).

The long sequence at each step i is exact, which means

im(γi) = ker(δi),

im(δi) = ker(di),

and im(di) = ker(γi).
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The way we defined γ, δ and d gives us

im(γ) = ker(δ),

im(δ) = ker(d),

and im(d) = ker(γ).

Therefore, the long sequence of persistent homology modules is exact [14]. Instead
of the restrictions of the maps, we consider the maps themselves in module setup.
Then, the way we define the maps between the modules lets us make use of the
exactness of the sequences at each step. This solves the problems we face in the
group setup.

4.3. The excision theorem. For a relatively complicated spaceX, instead of
trying to compute the homology classes directly, we can choose suitable subspaces
A,B ⊂ X such that X = Ao ∪ Bo and apply excision to extract information we
seek. To carry this idea to the persistence setup, we first need to make sure that at
every step j in the filtration, we have the property Xj = Aoj ∪ Boj , where interiors
are with respect to Xj . Consider the subspace topology on each subspace in the
filtration. Recall that by taking any open set in X and intersect it with Xj , we
obtain an open set in the subspace topology on Xj . By defining Aj = A ∩Xj and
Bj = A ∩Xj , we derive filtrations of A and B. Since we assume X = Ao ∪Bo, for
all three fitrations we see that [11],

Xj = Xj ∩X = Xj ∩ (Ao ∪Bo),
= (Xj ∩Ao) ∪ (Xj ∩Bo),
= (Xj ∩Ao)o ∪ (Xj ∩Bo)o (since these sets are open in Xj),

⊆ (Xj ∩A)o ∪ (Xj ∩B)o,

= Aoj ∪Boj .
Thus, for every step in the filtration, we have the excision theorem. Consider steps
j and k such that j < k. Then we have,

Hn(Bj , Bj ∩Aj) Hn(Xj , Aj)

Hn(Bk, Bk ∩Ak) Hn(Xk, Ak),

fj

i1∗ i2∗

fk

where fj and fk are isomorphisms. Since all of the maps in the diagram are induced
by inclusion maps, the diagram is commutative.

We express the diagram as in Figure 11. From the commutativity of the dia-
gram, we have

im(i2∗ ◦ fj) = im(fk ◦ i1∗).
Since fj is an isomorphism,

im(i2∗ ◦ fj) = im(i2∗).

Moreover,
im(fk ◦ i1∗) = im(fk|im(i1∗)

).
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Hn(Bj , Bj ∩ Aj) Hn(Xj , Aj)

Hn(Bk, Bk ∩ Ak) Hn(Xk, Ak)

fj

fk

i1∗ i2∗

im(i1∗) im(i2∗)

Figure 11. A visual representation of the square diagram.

Bringing these observations together, we have,

im(i2∗) = im(fk|im(i1∗)
).

Since fk is an isomorphism, the restriction fk|im(i1∗)
is also an isomorphism between

im(i1∗) and im(i2∗). In our case, from the definition of persistent homology groups
we have

im(i1∗) = Hj,k
n (B,B ∩A),

im(i2∗) = Hj,k
n (X,A).

Then, we see that the excision theorem holds for persistent homology groups [11]
as,

Hj,k
n (B,B ∩A) ∼= Hj,k

n (X,A).

In the case of persistent homology modules, since fi is an isomorphism at each
step i, f = (f0, f1, ..., fn) is also an isomorphism between the persistent homology
modules. That is

Hn(B,B ∩A) ∼= Hn(X,A),

which means that the excision theorem also holds for persistent homology modules.
[11].

Example 4.4. Consider Figure 12, where we have subspaces A and B of a
topological space X such that X = Ao ∪ Bo. The sublevel set filtrations of these
spaces are also given in the figure. We form quotient spaces as in Figure 13, and
determine their first homology groups.

We see in Figure 13 that both X0/A0 and B0/(B0∩A0) have no 1-dimensional
holes, which means that their first homology groups are trivial. All the other spaces
in Figure 13 have three 1-dimensional holes, each. Thus, their first homology groups
have three generators, each. We represent these classes by a, b and c. Bringing these
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a = a0

a = a1

a = a2

X B A B ∩A

X0 B0 A0 B0 ∩A0

X1 B1 A1 B1 ∩A1

X2 B2 A2 B2 ∩A2

Figure 12. A sublevel set filtration of a topological space X, and
its subspaces A, B and B ∩A.

X0/A0

X1/A1

X2/A2

B0/(B0 ∩A0)

B1/(B1 ∩A1)

B2/(B2 ∩A2)

c

a b

Figure 13. Quotient spaces obtained from the filtration in Figure 12.

together, we obtain the relative homology groups,

H1(X0, A0) = 0, H1(B0, (B0 ∩A0)) = 0,

H1(X1, A1) = <a, b, c>, H1(B1, (B1 ∩A1)) = <a, b, c>,

H1(X2, A2) = <a, b, c>, H1(B2, (B2 ∩A2)) = <a, b, c>.
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We compute the persistent homology groups,

H0,1
1 (X,A) = 0, H0,1

1 (B,B ∩A) = 0,

H0,2
1 (X,A) = 0, H0,2

1 (B,B ∩A) = 0,

H1,2
1 (X,A) = <a, b, c>, H1,2

1 (B,B ∩A) = <a, b, c>.

We observe that,

H0,1
1 (X,A) ∼= H0,1

1 (B,B ∩A),

H0,2
1 (X,A) ∼= H0,2

1 (B,B ∩A),

H1,2
1 (X,A) ∼= H1,2

1 (B,B ∩A).
We verify in the example that the excision theorem holds for each first persistent
homology group.

5. Conclusion

Data analysis is a part of many research areas. As the datasets get more
complex day by day, we need better and faster computation methods to be able to
keep analysing the data effectively. Any improvements to the methods being used
not only extends the theory but also increase the efficiency in the applications.
Thus, carrying computation methods of usual homology to persistent homology
plays a key role in the improvement of data analysis via persistent homology.
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