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and Manimaran Rathivel

Abstract. This paper introduces the concept of neutrosophic modular space.

Afterward, a Hausdorff topology induced by a δ-homogeneous neutrosophic
modular is defined and some related topological properties are also examined.

After giving the fundamental definitions and the necessary examples, we intro-

duce the definitions of Neutrosophic boundedness, neutrosophic compactness
and neutrosophic convergence, and obtain several preservation properties and

some characterizations concerning them. Also, we investigate the relation-

ship between a neutrosophic modular and a neutrosophic metric. Finally, we
prove some known results of metric spaces including Baire’s theorem and the

Uniform limit theorem for neutrosophic modular spaces.

1. Introduction

The notion of fuzzy sets was introduced by Zadeh [26] in 1965 and there are
many viewpoints on the notion of metric space in topology. Kramosil and Michalek
[13] introduced the concept of a metric space, which can be regarded as a gen-
eralization of the probabilistic metric space. Afterward, Grabiec [5] defined the
metric spaces completeness and extended the Banach contraction theorem to the
complete metric spaces. Next, George and Veeramani [6] modified the definition
of the Cauchy sequence introduced by Grabiec. Atanassov [1] gave the concept of
an intuitionistic set as a generalization of a set. Park [19] introduced the notion of
an intuitionistic metric space as a natural generalization of a metric space due to
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George and Veeramani. He proved Baire’s theorem and the uniform limit theorem
for these spaces. For more details on intuitionistic metric space and related results,
we refer the reader to [2, 18].

The concept of a modular space was founded by Nakano [16] and developed
by Luxemburg [14]. Then, Musielak and Orlicz [15] redefined and generalized
the notion of modular space Kozlowski [10, 11] introduced a modular function
space. In the sequel, Kozlowski and Lewicki [12] considered the problem of analytic
extension of measurable functions in modular function spaces and discussed some
extension properties by means of polynomial approximation. Afterward, Kilmer
and Kozlowski [8] studied the existence of best approximations in modular function
spaces by elements of sub lattices. Nourouzi [17] proposed probabilistic modular
spaces based on the theory of modular spaces and in [18] he extended the well-known
Baire’s theorem to probabilistic modular spaces by using a special condition. Shen
and Chen [24] introduced the notion of modular space by using continuous t-norm
and continuous t-conorm.

In 1998, Smarandache [21] characterized the new concept called neutrosophic
logic and neutrosophic set and explored many results in it. In the idea of neu-
trosophic sets, there is T degree of membership, I degree of indeterminacy and F
degree of non-membership Basset et al., explored the neutrosophic applications in
dif and only different fields such as model for sustainable supply chain risk manage-
ment, resource levelling problem in construction projects, decision making. In 2020,
Kirisci et al [9] defined neutrosophic metric spaces as a generalization of Intuition-
istic metric spaces and bring about fixed point theorems in complete neutrosophic
metric spaces. In 2020, Sowndrarajan et al. [22] proved some fixed point results
for contraction theorems in neutrosophic metric spaces.

The concept of neutrosophic modular space is first proposed in this paper. We
investigate some topological properties and the existence of a relationship between
an neutrosophic modular and an neutrosophic metric. The paper is organized as
follows. First, we recall the fundamental definitions and the necessary examples of
an neutrosophic metric space. In section 2, following the idea of modular spaces and
the definition of an neutrosophic metric space, we give a new concept named neu-
trosophic modular space and give two examples to show that there does not exist a
direct relationship between an neutrosophic modular and an neutrosophic metric.
In section 3, a Hausdorff topology induced by a δ-homogeneous neutrosophic mod-
ular is defined, and several theorems on µ, ν, w completeness of the neutrosophic
modular space are given. Finally, the well-known Baire’s theorem and the uniform
limit theorem are extended to neutrosophic modular spaces.

Definition 1.1. [18] Let Ξ be a non void set, ∗ is a continuous t-norm, 3 is a
continuous t-conorm, if fuzzy sets P, I,K on Ξ2× (0,∞) such that for all é, ỳ, z̀ ∈ Ξ
and ς̆ , τ̆ > 0 satisfies the following:
1. P(é, ỳ, τ̆) + I(é, ỳ, τ̆) + K(é, k̀, τ̆ ⩽ 3,
2. P(é, ỳ, τ̆) > 0,
3. P(é, ỳ, τ̆) = 1 if and only if é = ỳ,
4. P(é, ỳ, τ̆) = P(ỳ, é, τ̆),
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5. P(é, ỳ, τ̆) ∗P(ỳ, z̀, ς̆) ⩽ P(é, z̀, τ̆ + ς̆),
6. P(é, ỳ, .) : (0,∞) → (0, 1] is continuous,
7. I(é, ỳ, τ̆) > 0,
8. I(é, ỳ, τ̆) = 0 if and only if é = ỳ,
9. I(é, ỳ, τ̆) = I(ỳ, é, τ̆),
10. I(é, ỳ, τ̆)3I(ỳ, z̀, ς̆) ⩾ I(é, z̀, τ̆ + ς̆),
11. I(é, ỳ, .) : (0,∞) → (0, 1] is continuous.
12. K(é, ỳ, τ̆) > 0,
13. K(é, ỳ, τ̆) = 0 if and only if é = ỳ,
14. K(é, ỳ, τ̆) = K(ỳ, é, τ̆),
15. K(é, ỳ, τ̆)3K(ỳ, z̀, ς̆) ⩾ K(é, z̀, τ̆ + ς̆),
16. K(é, ỳ, .) : (0,∞) → (0, 1] is continuous.

Then (P, I,K) is called a neutrosophic metric on Ξ.

Example 1.1. [18], Let (Ξ, d) be a metric space.
Denote a ∗ b = ab and a3b = min{1, a+ b} for all a, b ∈ [0, 1] and let Pd , Id and
Kd be fuzzy sets on Ξ2 × (0,∞) defined as follows:

Pd(é, ỳ, τ̆) =
hτ̆n

hτ̆n+md(é,ỳ) , Id(é, ỳ, τ̆) =
d(é,ỳ)

kτ̆n+md(é,ỳ) ,Kd(é, ỳ, τ̆) =
d(é,ỳ)

lτ̆n+md(é,ỳ)

for all h, k, l,m, n ∈ R+. Then (Ξ,Pd, Id,Kd∗,3,⊙) is a neutrosophic metric space.

2. Neutrosophic modular spaces

In this section, we introduce the concept of a neutrosophic modular space by
using continuous t-norm and continuous t-conorm. We investigate the relationship
between a neutrosophic modular and a neutrosophic metric.

Definition 2.1. A 7-tuple (Ξ, λ̇, π̈,
...
ϖ, ∗,3,⊙) is said to be an neutrosophic

modular space if Ξ is a real or complex vector space, ∗ is a continuous t-norm,
3 is a continuous t-conorm and λ̇, π̈,

...
ϖ are sets on Ξ × (0,∞) such that for all

é, ỳ, z̀ ∈ Ξ, ς̆ , τ̆ > 0 and ϵ̂, κ̌ ⩾ 0 with ϵ̂+ κ̌ = 1 followings hold:
1. λ̇(é, τ̆) + π̈(é, τ̆) +

...
ϖ(é, τ̆) ⩽ 3,

2. λ̇(é, τ̆) > 0,

3. λ̇(é, τ̆) = 1 if and only if é = 0,

4. λ̇(é, τ̆) = λ̇(−é, τ̆),

5. λ̇(ϵ̂é+ κ̌ỳ, ς̆ + τ̆) ⩾ λ̇(é, ς̆) ∗ λ̇(ỳ, τ̆),
6. λ̇(é, .) : (0,∞) → (0, 1] is continuous,
7. π̈(é, τ̆) > 0,
8. π̈(é, τ̆) = 0 if and only if é = 0,
9. π̈(é, τ̆) = π̈(−é, τ̆),
10. π̈(ϵ̂é+ κ̌ỳ, ς̆ + τ̆) ⩽ π̈(é, ς̆)3π̈(ỳ, τ̆),
11. π̈(é, .) : (0,∞) → (0, 1] is continuous.
12.

...
ϖ(é, τ̆) > 0,

13.
...
ϖ(é, τ̆) = 0 if and only if é = 0,

14.
...
ϖ(é, τ̆) =

...
ϖ(−é, τ̆),

15.
...
ϖ(ϵ̂é+ κ̌ỳ, ς̆ + τ̆) ⩽

...
ϖ(é, ς̆)3

...
ϖ(ỳ, τ̆),
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16.
...
ϖ(é, .) : (0,∞) → (0, 1] is continuous.

Then (λ̇, π̈,
...
ϖ) is called a neutrosophic modular or neutrosophic F̂-modular on Ξ.

The 7-tuple (Ξ, λ̇, π̈,
...
ϖ, ∗,3,⊙) is called δ-homogeneous, where δ ∈ (0, 1], if for

each é ∈ Ξ, τ̆ > 0 and Υ̃ ∈ R− {0},
λ̇(Υ̃é, τ̆) = λ̇

(
é, t

|Υ̃|δ

)
, π̈(Υ̃é, τ̆) = π̈

(
é, τ̆

|Υ̃|δ

)
,
...
ϖ(Υ̃é, τ̆) =

...
ϖ
(
é, τ̆

|Υ̃|δ

)
.

Remark 2.1. (i) If (Ξ, λ̇, ∗) is a F̂-modular space, then (Ξ, λ̇, 1−λ̇, 1−λ̇, ∗,3,⊙)

is an NF̂M such that for any a, b ∈ [0, 1], a3b = 1− ((1− a) ∗ (1− b)).

(ii) In NF̂M (Ξ, λ̇, π̈,
...
ϖ, ∗,3,⊙), for all é, ỳ ∈ Ξ, λ̇(é, ỳ, .) is non-decreasing and

π̈(é, ỳ, .),
...
ϖ(é, ỳ, .) are non-increasing.

Example 2.1. Let (Ξ, ϱ̇) be a modular space.
Consider a ∗ b = ab, a3b = min{1, a + b} as well as a ⊙ b = min{1, a + b} for all

a, b ∈ [0, 1], in addition to define sets λ̇ϱ̇, π̈ϱ̇ and
...
ϖ ϱ̇on Ξ× (0,∞) according to,

λ̇ϱ̇(é, τ̆) =
hτ̆n

hτ̆n+mϱ̇(é) , π̈ϱ̇(é, τ̆) =
ϱ̇(é)

kτ̆n+mϱ̇(é) ,
...
ϖ ϱ̇(é, τ̆) =

mϱ̇(é)
kτ̆n

for all h, k ∈ R+ and m, n ∈ N. Then (Ξ, λ̇, π̈,
...
ϖ, ∗,3,⊙) is a neutrosophic F̂-

modular space (NF̂M). We look into condition (5) within Definition (2.1). In this
case, let ϵ̂, κ̌ ⩾ 0 with ϵ̂+ κ̌ = 1, because ϱ̇ is modular, we get

(2.1) ϱ̇(ϵ̂é+ κ̌ỳ) ⩽ ϱ̇(é) + ϱ̇(ỳ),

for every é, ỳ ∈ Ξ. As a result

λ̇(é, ς̆) ∗ λ̇(ỳ, τ̆) = hς̆n

hς̆n +mϱ̇(é)
∗ hτ̆n

hτ̆n +mϱ̇(ỳ)

=
h2ς̆nτ̆n

(hς̆n +mϱ̇(é))(hτ̆n +mϱ̇(ỳ))

⩽
hς̆nτ̆n

hς̆nτ̆n +m(τ̆nϱ̇(é) + ς̆nϱ̇(ỳ))
.

Without lossing of generality, we assume that τ̆ ⩽ ς̆. Using (2.1) we then obtain

λ̇(é, ς̆) ∗ λ̇(y, τ̆) ⩽ hς̆n

hς̆n +mϱ̇(ϵ̂é+ κ̌ỳ)

⩽
h(ς̆ + τ̆)n

h(ς̆ + τ̆)n +mϱ̇(ϵ̂é+ κ̌ỳ)

= λ̇(ϵ̂é+ κ̌ỳ, ς̆ + τ̆).

Remark 2.2. By getting h = k = m = n = 1, from Example (2.1), we obtain

λ̇ϱ̇(é, τ̆) =
τ̆

τ̆+ϱ̇(é) , π̈ϱ̇(é, τ̆) =
ϱ̇(é)

τ̆+ϱ̇(é) ,
...
ϖ ϱ̇(é, τ̆) =

ϱ̇(é)
τ̆ . This NF̂M is called the stan-

dard NF̂M.

It should be noted that, in general, a neutrosophic modular and a neutrosophic
metric do not necessarily induce mutually a metric when the triangular norm is the
same one. In essence, the neutrosophic modular and neutrosophic metric can be
viewed as two different characterizations for the same set. Next, we give two exam-
ples to show that there does not exist a direct relationship between neutrosophic
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modular and an neutrosophic metric. In fact, the neutrosophic modular and the
neutrosophic metric can be viewed as two different characterizations for the same
set.

Example 2.2. Let Ξ = R in addition to apply ϱ̇(é) = |́e|, afterwards ϱ̇ is
modular on Ξ. Apply a ∗ b = min{a, b}, a3b = 1− ((1− a) ∗ (1− b)) and
a ⊙ b = 1 − ((1 − a) ∗ (1 − b)) or a3b = max{a, b}, a ⊙ b = max{a, b}. For every

τ̆ ∈ (0,∞) and é ∈ Ξ, define λ̇(é, τ̆) = τ̆
τ̆+|é| . Then (Ξ, λ̇, ∗) is an F̂-modular space

and so by Remark (2.1),

(Ξ, λ̇, 1− λ̇, , 1− λ̇, ∗,3,⊙) is an neutrosophic F̂-modular space. However, if we set

P(é, ỳ, τ̆) = λ̇(é− ỳ, τ̆) = τ̆
τ̆+|é−ỳ| , I(é, ỳ, τ̆) =

|é−ỳ|
τ̆+|é−ỳ| , andK(é, ỳ, τ̆) =

|é−ỳ|
τ̆ ,

when t-norm as well as the t-conorm defined as
a ∗ b = min{a, b}, a3b = max{a, b} and a⊙ b = max{a, b} respectively.
Remark 2.1 suggests that (P, I,K) is not a neutrosophic metric.

Example 2.3. Let Ξ = R. Take t-norm a ∗ b = min{a, b}, t-conorm
a3b = a + b − ab and a ⊙ b = a + b − ab. For every é, ỳ ∈ Ξ and τ̆ ∈ (0,∞), we
specify

P(é, ỳ, τ̆) =


1, é = ỳ
1
2 , é ̸= ỳ, é, ỳ ∈ Z
1
4 , é ∈ Z, ỳ ∈ R\Z or é ∈ R\Z, ỳ ∈ Z
1
4 , é ̸= ỳ, é, ỳ ∈ R\Z,

I(é, ỳ, τ̆) =


0, é = ỳ
1
4 , é ̸= ỳ, é, ỳ ∈ Z
1
2 , é ∈ Z, ỳ ∈ R\Z or é ∈ R\Z, ỳ ∈ Z
1
2 , é ̸= ỳ, é, ỳ ∈ R\Z,

and

K(é, ỳ, τ̆) =


0, é = ỳ
1
4 , é ̸= ỳ, é, ỳ ∈ Z
1
2 , é ∈ Z, ỳ ∈ R\Z or é ∈ R\Z, ỳ ∈ Z
1
2 , é ̸= ỳ, é, ỳ ∈ R\Z,

The fact that it exists (P, I,K, ∗,3,⊙) is a neutrosophic metric on Ξ can easily be
demonstrated. Now, set

λ̇(é, τ̆) =

 1, é = 0
1
2 , é ∈ Z\{0}
1
4 , é ∈ R\Z

, π̈(é, τ̆) =

 0, é = 0
1
4 , é ∈ Z\{0}
1
2 , é ∈ R\Z.

and

...
ϖ(é, τ̆) =

 0, é = 0
1
4 , é ∈ Z\{0}
1
2 , é ∈ R\Z

When we choose ϵ̂ =
√
2
2 , κ̌ = 1− ϵ̂, é ̸= ỳ, and é, ỳ ∈ Z, then ϵ̂é+ κ̌ỳ ∈ R\Z.

Hence for each ς̆ , τ̆ > 0, we have λ̇(ϵ̂é+ κ̌ỳ, ς̆ + τ̆) = 1
4 , but λ̇(é, ς̆) ∗ λ̇(ỳ, τ̆) =

1
2 .

Also π̈(ϵ̂é+ κ̌ỳ, ς̆ + τ̆) = 1
2 ,

...
ϖ(ϵ̂é+ κ̌ỳ, ς̆ + τ̆) = 1

2 , but π̈(é, ς̆)3π̈(ỳ, τ̆) = 1
4 .

Therefore (λ̇, π̈,
...
ϖ) is not an NM on Ξ.
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3. Topology induced by δ-homogeneous neutrosophic modular spaces

In this section, we define a topology induced by a δ-homogeneous N F̂M and in-
vestigate some topological properties in δ-homogeneous NF̂M. The results obtained
in this section are an extension of the results presented in [24] to NF̂M.

Definition 3.1. Let (Ξ, λ̇, π̈,
...
ϖ, ∗,3,⊙) be an NF̂M and let é ∈ Ξ, r ∈ (0, 1)

and τ̆ > 0. Then the λ̇− π̈− ...
ϖ-ball with center é and radius r with respect to τ̆ is

defined as B(é, r, τ̆) = {ỳ ∈ Ξ : λ̇(é− ỳ, τ̆) > 1− r, π̈(é− ỳ, τ̆) < r,
...
ϖ(é− ỳ, τ̆) < r}.

Let E ⊆ Ξ. An element é ∈ E is called a λ̇− π̈− ...
ϖ-interior point of E if there exist

r ∈ (0, 1) and τ̆ > 0 such that B(é, r, τ̆) ⊆ E. We say that E is a λ̇ − π̈ − ...
ϖ-open

set in Ξ if and only if every element of E is a λ̇− π̈ − ...
ϖ-interior point. Note that

each open set in an NF̂Mis not a λ̇− π̈ − ...
ϖ-ball in general.

Example 3.1. Let Ξ = R and let ϱ̇, λ̇, ∗ and 3 be as in Example (2.2. Consider
V = {é ∈ R : 0 < é < 1} ∪ {é ∈ R : 1 < é < 2}. Then V is an open set in

(R, λ̇, 1 − λ̇, ∗,3), but it is not a λ̇ − (1 − λ̇)-ball. In fact, the λ̇ − (1 − λ̇)-ball in

(R, λ̇, 1− λ̇, ∗,3) with center é and radius r is as follows.

B(é, r, τ̆) =

{
ỳ ∈ R :

τ̆

τ̆ + |́e− ỳ|
> 1− r,

|́e− ỳ|
τ̆ + |́e− ỳ|

< r

}
=

{
ỳ ∈ R : |́e− ỳ| < r

1− r
τ̆

}
.

Theorem 3.1. Each λ̇− π̈ − ...
ϖ-ball in a δ-homogeneous NF̂Mis an open set.

Proof. Let B(é, r, τ̆) be a λ̇− π̈ − ...
ϖ-ball and ỳ ∈ B(é, r, τ̆). Then

λ̇(é− ỳ, τ̆) > 1− r, π̈(é− ỳ, τ̆) < r and
...
ϖ(é− ỳ, τ̆) < r.

Put τ̆ = 2τ̆1. Since λ̇(é − ỳ, .) and π̈(é − ỳ, .) are continuous, there exists ξỳ > 0
such that

λ̇

(
é− ỳ,

τ̆1 − ξỳ
2δ−1

)
> 1− r, π̈

(
é− ỳ,

τ̆1 − ξỳ
2δ−1

)
< r and

...
ϖ

(
é− ỳ,

τ̆1 − ξỳ
2δ−1

)
< r.

For some ε > 0 with τ̆1−ε
2δ−1 > 0 and ε

2δ−1 ∈ (0, ξỳ), put r0 = λ̇
(
é− ỳ, τ̆1−ε

2δ−1

)
. Since

r0 > r − 1, there exists ς̆ ∈ (0, 1) such that r0 > 1 − ς̆ > 1 − r, by Lemma, we can
choose r1 ∈ (0, 1) such that r0 ∗ r0 ⩾ 1− ς̆ , (1− r0)3(1− r0) ⩽ ς̆ .
Put r3 = max{r1, r2}. We show that B

(
ỳ, 1− r3,

ε
2δ−1

)
⊆ B(é, r, 2τ̆1).

Suppose that z̀ ∈ B
(
ỳ, 1− r3,

ε
2δ−1

)
then

λ̇
(
ỳ− z̀,

ε

2δ−1

)
> r3, π̈

(
ỳ− z̀,

ε

2δ−1

)
< 1− r3 and

...
ϖ
(
ỳ− z̀,

ε

2δ−1

)
< 1− r3.
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Therefore

λ̇(é− z̀, τ̆) = λ̇(é− z̀, 2τ̆1) ⩾ λ̇(2(é− ỳ), 2(τ̆1 − ε)) ∗ λ̇(2(ỳ− z̀), 2ε)

= λ̇

(
é− ỳ,

τ̆1 − ε

2δ−1

)
∗ λ̇
(
ỳ− z̀,

ε

2δ−1

)
⩾ r0 ∗ r1 ⩾ 1− ς̆ > 1− r,

π̈(é− z̀, τ̆) = π̈(é− z̀, 2τ̆1) ⩽ π̈(2(é− ỳ), 2(τ̆1 − ε))3π̈(2(ỳ− z̀), 2ε)

= π̈

(
é− ỳ,

τ̆1 − ε

2δ−1

)
3π̈
(
ỳ− z̀,

ε

2δ−1

)
< (1− r0)3(1− r3) ⩽ (1− r0)3(1− r2) ⩽ ς̆ < r,

π̈(é− z̀, τ̆) =
...
ϖ(é− z̀, 2τ̆1) ⩽

...
ϖ(2(é− ỳ), 2(τ̆1 − ε))3

...
ϖ(2(ỳ− z̀), 2ε)

=
...
ϖ

(
é− ỳ,

τ̆1 − ε

2δ−1

)
3
...
ϖ
(
ỳ− z̀,

ε

2δ−1

)
< (1− r0)3(1− r3) ⩽ (1− r0)3(1− r2) ⩽ ς̆ < r.

Therefore z̀ ∈ B(é, r, τ̆) and hence B
(
ỳ, 1− r3,

ε
2δ−1

)
⊆ B(é, r, τ̆).

Now, we define a topology on a δ-homogeneous NF̂M. □

Definition 3.2. Let (Ξ, λ̇, π̈,
...
ϖ, ∗,3,⊙) be a δ-homogeneous NF̂M.

Define τ(λ̇, π̈,
...
ϖ) = {V ⊆ Ξ : ∀é ∈ V,∃τ̆ > 0, r ∈ (0, 1);B(é, r, τ̆) ⊆ V}. Then

τ(λ̇, π̈,
...
ϖ) is a topology on Ξ.

Remark 3.1. Since the family of λ̇ − π̈ − ...
ϖ-balls

{
B
(
é, 1

n ,
1
n

)
: n ∈ N

}
is a

local base at é, the topology τ(λ̇, π̈,
...
ϖ) is first countable.

Example 3.2. Let Ξ = R and let ϱ̇, λ̇, ∗ and 3 be as in Example (2.2). Then

the set of all {(a, b) : a, b ∈ R} induces a topology on (R, λ̇, 1− λ̇, ∗,3).

Theorem 3.2. Every δ-homogeneous NF̂M is Hausdorff.

Proof. Let é, ỳ be two distinct points in δ-homogeneous NF̂M
(Ξ, λ̇, π̈,

...
ϖ, ∗,3,⊙). Then for all τ̆ > 0, 0 < λ̇(é− ỳ, τ̆) < 1, 0 < π̈(é− ỳ, τ̆) < 1.

Put r1 = λ̇(é− ỳ, τ̆), r2 = π̈(é− ỳ, τ̆) and r = max{r1, r2}.
For r0 ∈ (r, 1), there are r3, r4such that r3 ∗ r3 ⩾ r0, (1− r4)3(1− r4) ⩽ 1− r0.
Put r5 = max{r3, r4}. Then B

(
é, 1− r5,

τ̆
2δ+1

)⋂
B
(
ỳ, 1− r5,

τ̆
2κ̌+1

)
= ∅.
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Otherwise, if there exists z̀ ∈ B
(
é, 1− r5,

τ̆
2δ+1

)⋂
B
(
ỳ, 1− r5,

τ̆
2δ+1

)
, then

r1 = λ̇(é− ỳ, τ̆) ⩾ λ̇

(
2(é− z̀),

τ̆

2

)
∗ λ̇
(
2(z̀− ỳ),

τ̆

2

)
= λ̇

(
é− z̀,

τ̆

2δ+1

)
∗ λ̇
(
z̀− ỳ,

τ̆

2δ+1

)
⩾ r5 ∗ r5 ⩾ r3 ∗ r3 ⩾ r0 > r1, and

r2 = π̈(é− ỳ, τ̆) ⩽ π̈

(
2(é− z̀),

τ̆

2

)
3π̈

(
2(z̀− ỳ),

τ̆

2

)
= π̈

(
é− z̀,

τ̆

2δ+1

)
3π̈

(
z̀− ỳ,

τ̆

2δ+1

)
⩽ (1− r5)3(1− r5) ⩽ (1− r4)3(1− r4) ⩽ 1− r0 < r2,

which is a contradiction. Therefore (Ξ, λ̇, π̈,
...
ϖ, ∗,3,⊙) is Hausdorff. □

In the following, we give further properties of a δ-homogeneous NF̂M.

Definition 3.3. Let (Ξ, λ̇, π̈,
...
ϖ, ∗,3,⊙) be a δ-homogeneous NF̂M.

1. A subset A of Ξ is said to be λ̇− π̈− ...
ϖ-bounded if there are τ̆ > 0 and r ∈ (0, 1)

such that for all é ∈ A, λ̇(é, τ̆) > 1− r, π̈(é, τ̆) < r and
...
ϖ(é, τ̆) < r.

2. A subset A of Ξ is said to be λ̇− π̈− ...
ϖ-compact if every λ̇− π̈− ...

ϖ-open cover
of A has a finite subcover.
3. A sequence {én} in Ξ is said to be λ̇ − π̈ − ...

ϖ-convergent to é ∈ Ξ if for every
r ∈ (0, 1) and τ̆ > 0 there exists n0 ∈ N such that for each n > n0, én ∈ B(é, r, τ̆).

Example 3.3. Let Ξ = R and let ϱ̇, λ̇, ∗ and 3 be as in Example (2.2).
(i) Consider V = {é ∈ R : 0 < é < 1}.
Then V is a bounded set in (R, λ̇, 1− λ̇, ∗,3).

(ii) Each finite set in (R, λ̇, 1− λ̇, ∗,3) is λ̇− π̈ − ...
ϖ-compact.

(iii) The sequence
{

1
n

}
is λ̇− π̈− ...

ϖ-convergent to 0 in (R, λ̇, 1− λ̇, ∗,3) by choosing

n0 such that 1− τ̆ < 1
n0

< r.

Theorem 3.3. Every λ̇− π̈ − ...
ϖ-compact subset of a

δ-homogeneous NF̂M(Ξ, λ̇, π̈,
...
ϖ, ∗,3,⊙), is λ̇− π̈ − ...

ϖ-bounded.

Proof. Let A be a λ̇− π̈ − ...
ϖ-compact subset of (Ξ, λ̇, π̈,

...
ϖ, ∗,3,⊙).

Fix τ̆ > 0 and r ∈ (0, 1), then the family
{
B
(
é, r, τ̆

2δ+1

)
: é ∈ A

}
is an open cover of

A, since A is compact there exist é1, . . . , én ∈ A such that A ⊂ ∪n
i=1B

(
éi, r,

τ̆
2δ+1

)
.

Hence for each é ∈ A there exists i such that é ∈ B
(
éi, r,

τ̆
2δ+1

)
. Thus

λ̇

(
é− éi,

τ̆

2δ+1

)
> 1− r, π̈

(
é− éi,

τ̆

2δ+1

)
< r and

...
ϖ

(
é− éi,

τ̆

2δ+1

)
< r.

Put ϵ̂1 = min
{
λ̇
(
éi,

τ̆
2δ+1

)
: 1 ⩽ i ⩽ n

}
, ϵ̂2 = max

{
π̈
(
éi,

τ̆
2δ+1

)
: 1 ⩽ i ⩽ n

}
, and

ϵ̂3 = max
{ ...
ϖ
(
éi,

τ̆
2δ+1

)
: 1 ⩽ i ⩽ n

}
it is clear that ϵ̂1, ϵ̂2, ϵ̂3 > 0.
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Hence for some ς̆1, ς̆2, ς̆3 ∈ (0, 1) we have

λ̇(é, τ̆) = λ̇((é− éi) + éi, τ̆) ⩾ λ̇

(
2(é− éi),

τ̆

2

)
∗ λ̇
(
2éi,

τ̆

2

)
= λ̇

(
é− éi,

τ̆

2δ+1

)
∗ λ̇
(
ΞI ,

τ̆

2δ+1

)
⩾ (1− r) ∗ ϵ̂1 > 1− ς̆1,

π̈(é, τ̆) = π̈((é− éi) + éi, τ̆) ⩽ π̈

(
2(é− éi),

τ̆

2

)
3π̈

(
2éi,

τ̆

2

)
= π̈

(
é− éi,

τ̆

2δ+1

)
3π̈

(
Ξi,

τ̆

2δ+1

)
⩽ r3ϵ̂2 < ς̆2, and

...
ϖ(é, τ̆) =

...
ϖ((é− éi) + éi, τ̆) ⩽

...
ϖ

(
2(é− éi),

τ̆

2

)
3
...
ϖ

(
2éi,

τ̆

2

)
=

...
ϖ

(
é− éi,

τ̆

2δ+1

)
3
...
ϖ

(
Ξi,

τ̆

2δ+1

)
⩽ r3ϵ̂3 < ς̆3.

Taking ς̆ = max{ς̆1, ς̆2, ς̆3} we conclude λ̇(é, τ̆) > 1−ς̆, π̈(é, τ̆) < ς̆, and
...
ϖ(é, τ̆) < ς̆

consequently A is λ̇− π̈ − ...
ϖ-bounded. □

Theorem 3.4. Let (Ξ, λ̇, π̈,
...
ϖ, ∗,3,⊙) be a δ-homogeneous NF̂Mand {én} a

sequence in Ξ. Then én → é if and only if λ̇(én − é, τ̆) → 1, π̈(én − é, τ̆) → 0 and
...
ϖ(én − é, τ̆) → 0.

Proof. Fix τ̆ > 0. Assume that én → é, then for r ∈ (0, 1) there exists n0 ∈ N
such that for each n ⩾ n0, én ∈ B(é, r, τ̆), so λ̇(én − é, τ̆) > 1 − r, π̈(én − é, τ̆) < r
and

...
ϖ(én − é, τ̆) < r.

Hence λ̇(én − é, τ̆) → 1, π̈(én − é, τ̆) → 0, and
...
ϖ(én − é, τ̆) → 0.

Conversely, for each τ̆ > 0, let λ̇(én−é, τ̆) → 1, π̈(én−é, τ̆) → 0 and
...
ϖ(én−é, τ̆) → 0.

Then for r ∈ (0, 1), there exists n0 ∈ N such that for each n ⩾ n0,

1− λ̇(én − é, τ̆) < r, π̈(én − é, τ̆) < r and
...
ϖ(én − é, τ̆) < r.

Therefore λ̇(én − é, τ̆) > 1− r, π̈(én − é, τ̆) < r and
...
ϖ(én − é, τ̆) < r for all n ⩾ n0,

that is, én ∈ B(é, r, τ̆) and so én → é. □

In the following, we give some related results of completeness of an NF̂M.

Definition 3.4. Let (Ξ, λ̇, π̈,
...
ϖ, ∗,3,⊙) be an NF̂M.

1. A sequence {én} in Ξ is called λ̇−π̈− ...
ϖ-Cauchy if for every ε > 0 and τ̆ > 0 there

exists n0 ∈ N such that λ̇(én− ém, τ̆) > 1−r, π̈(én− ém, τ̆) < r and π̈(én− ém, τ̆) < r
for all m,n ⩾ n0.
2. Ξ is called λ̇− π̈− ...

ϖ-complete if every λ̇− π̈− ...
ϖ-Cauchy sequence is λ̇− π̈− ...

ϖ-
convergent.

Theorem 3.5. Let (Ξ, λ̇, π̈,
...
ϖ, ∗P,3P,⊙P) be a δ-homogeneous NF̂M. Then

every λ̇− π̈ − ...
ϖ-convergent sequence in Ξ is a λ̇− π̈ − ...

ϖ-Cauchy sequence.

Proof. Let {én} be λ̇− π̈ − ...
ϖ-convergent to é ∈ Ξ.

Then for every ε > 0 and τ̆ > 0 there exists n0 ∈ N such that
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λ̇
(
én − é, τ̆

2δ+1

)
> 1 − ε, π̈

(
én − é, τ̆

2δ+1

)
< ε and

...
ϖ
(
én − é, τ̆

2δ+1

)
< ε for all

n ⩾ n0. For all m,n ⩾ n0 we get

λ̇(ém − én, τ̆) ⩾ λ̇

(
2(ém − é),

τ̆

2

)
∗ λ̇
(
2(én − é),

τ̆

2

)
⩾ λ̇

(
ém − é,

τ̆

2δ+1

)
∗ λ̇
(
én − é,

τ̆

2δ+1

)
> (1− ε) ∗P (1− ε) = 1− ε,

π̈(ém − én, τ̆) ⩽ π̈

(
2(ém − é),

τ̆

2

)
3π̈

(
2(én − é),

τ̆

2

)
⩽ π̈

(
ém − é,

τ̆

2δ+1

)
3π̈

(
én − é,

τ̆

2δ+1

)
< ε3Pε = ε and

...
ϖ(ém − én, τ̆) ⩽

...
ϖ

(
2(ém − é),

τ̆

2

)
⊙ ...

ϖ

(
2(én − é),

τ̆

2

)
⩽

...
ϖ

(
ém − é,

τ̆

2δ+1

)
⊙ ...

ϖ

(
én − é,

τ̆

2δ+1

)
< ε⊙P ε = ε

□

Remark 3.2. (1) Theorem (3.5) shows that in an NF̂M, a λ̇−π̈− ...
ϖ-convergent

sequence is not necessarily a λ̇ − π̈ − ...
ϖ-Cauchy sequence, and the δ-homogeneity

and the choice of t-norm and t-conorm are essential.
(2) From Definition (3.4), it is clear that each λ̇−π̈− ...

ϖ-closed subspace of λ̇−π̈− ...
ϖ-

complete F̂-modular space is λ̇− π̈ − ...
ϖ-complete.

Theorem 3.6. Let (Ξ, λ̇, π̈,
...
ϖ, ∗,3,⊙) be a δ-homogeneous NF̂M and Y a sub-

set of Ξ. If every λ̇− π̈ − ...
ϖ-Cauchy sequence of Y is λ̇− π̈ − ...

ϖ-convergent in Ξ,
then every λ̇− π̈ − ...

ϖ-Cauchy sequence of Ȳ is λ̇− π̈ − ...
ϖ-convergent in Ξ, where

Ȳ denotes the λ̇− π̈ − ...
ϖ-closure of Y.

Proof. Let {én} be a λ̇− π̈ − ...
ϖ-Cauchy sequence of Ȳ, then for each n ∈ N

and τ̆ > 0, there exists ỳn ∈ Y such that
λ̇
(
én − ỳn,

τ̆
4δ+1

)
> 1− 1

n+1 π̈
(
én − ỳn,

τ̆
4δ+1

)
< 1

n+1 and
...
ϖ
(
én − ỳn,

τ̆
4δ+1

)
< 1

n+1 .

Since λ̇(é, .) is non-decreasing and π̈(é, .) is non-increasing, we have

λ̇
(
én − ỳn,

τ̆
2δ+1

)
> 1− 1

n+1 π̈
(
én − ỳn,

τ̆
2δ+1

)
< 1

n+1 and
...
ϖ
(
én − ỳn,

τ̆
2δ+1

)
< 1

n+1 .

Moreover for each r ∈ (0, 1) and τ̆ > 0, there exists n0 ∈ N such that

λ̇
(
én − ém, τ̆

4δ+1

)
> 1− r, π̈

(
én − ém, τ̆

4δ+1

)
< r and

...
ϖ
(
én − ém, τ̆

4δ+1

)
< r

for all m,n ⩾ n0.
That is, λ̇

(
én − ém, τ̆

4δ+1

)
→ 1, π̈

(
én − ém, τ̆

4δ+1

)
→ 0 and

...
ϖ
(
én − ém, τ̆

4δ+1

)
→ 0.

Now we show that {ỳn} is a λ̇− π̈ − ...
ϖ-Cauchy sequence in Y.
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For all m,n ⩾ n0 we have

λ̇(ỳn − ỳm, τ̆) ⩾ λ̇

(
2(ỳn − én),

τ̆

2

)
∗ λ̇
(
2(én − ỳn),

τ̆

2

)
⩾ λ̇

(
2(ỳn − én),

τ̆

2

)
∗ λ̇
(
4(én − ém),

τ̆

4

)
∗ λ̇
(
4(ém − ỳm),

τ̆

4

)
= λ̇

(
ỳn − én,

τ̆

2δ+1

)
∗ λ̇
(
én − ém,

τ̆

4δ+1

)
∗ λ̇
(
ém − ỳm,

τ̆

4δ+1

)
>

(
1− 1

n+ 1

)
∗ (1− r) ∗

(
1− 1

m+ 1

)
.

Since ∗ is continuous λ̇(ỳn − ỳm, τ̆) → 1, Furthermore

π̈(ỳn − ỳm, τ̆) ⩽ π̈

(
2(ỳn − én),

τ̆

2

)
3π̈

(
2(én − ỳn),

τ̆

2

)
⩽ π̈

(
2(ỳn − én),

τ̆

2

)
3π̈

(
4(én − ém),

τ̆

4

)
3π̈

(
4(ém − ỳm),

τ̆

4

)
= π̈

(
ỳn − én,

τ̆

2δ+1

)
3π̈

(
én − ém,

τ̆

4δ+1

)
3π̈

(
ém − ỳm,

τ̆

4δ+1

)
<

1

n+ 1
3r3

1

m+ 1
, and

...
ϖ (ỳn − ỳm, τ̆) ⩽

...
ϖ

(
2(ỳn − én),

τ̆

2

)
⊙ ...

ϖ

(
2(én − ỳn),

τ̆

2

)
⩽

...
ϖ

(
2(ỳn − én),

τ̆

2

)
⊙ ...

ϖ

(
4(én − ém),

τ̆

4

)
⊙ ...

ϖ

(
4(ém − ỳm),

τ̆

4

)
=

...
ϖ

(
ỳn − én,

τ̆

2δ+1

)
⊙ ...

ϖ

(
én − ém,

τ̆

4δ+1

)
⊙ ...

ϖ

(
ém − ỳm,

τ̆

4δ+1

)
<

1

n+ 1
⊙ r⊙ 1

m+ 1
.

Hence π̈(ỳn−ỳm, τ̆) → 0, that is, {ỳn} is Cauchy in Y , so it is λ̇−π̈− ...
ϖ-convergent

to é ∈ X. Thus for each ε > 0 and τ̆ > 0 there exists n1 ∈ N such that
λ̇
(
é− ỳn,

τ̆
2δ+1

)
> 1− ε, π̈

(
é− ỳn,

τ̆
2δ+1

)
< ε and

...
ϖ
(
é− ỳn,

τ̆
2δ+1

)
< ε

for all n ⩾ n1. Therefore

λ̇(én − é, τ̆) ⩾ λ̇

(
2(én − ỳn),

τ̆

2

)
∗ λ̇
(
2(ỳn − én),

τ̆

2

)
= λ̇

(
én − ỳn,

τ̆

2δ+1

)
∗ λ̇
(
én − ỳn,

τ̆

2δ+1

)
> (1− ε) ∗

(
1− 1

n+ 1

)
,

consequently, λ̇(én − é, τ̆) → 1. Similarly we have
π̈(én − é, τ̆) ⩽ π̈

(
én − ỳn,

τ̆
2δ+1

)
3π̈
(
én − ỳn,

τ̆
2δ+1

)
< ε ∗ 1

n+1 ,
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...
ϖ(én − é, τ̆) ⩽

...
ϖ
(
én − ỳn,

τ̆
2δ+1

)
3
...
ϖ
(
én − ỳn,

τ̆
2δ+1

)
< ε ∗ 1

n+1 .

Hence π̈(én − é, τ̆) → 0, and so the Cauchy sequence {én} in Ȳ converges to é ∈ Ξ.
This completes the proof. □

From Theorem (3.6) we get the following result.

Corollary 3.1. Let (Ξ, λ̇, π̈,
...
ϖ, ∗,3,⊙) be a δ-homogeneous NF̂M and let Y

be a dense subset of Ξ. If every λ̇ − π̈ − ...
ϖ-Cauchy sequence of Y is λ̇ − π̈ − ...

ϖ-
convergent in Ξ, then Ξ is λ̇ − π̈ − ...

ϖ-complete. Now we extend the well-known
Baire’s theorem to δ-homogeneous NF̂M.

Theorem 3.7. Let {Un}n∈N be a sequence of λ̇− π̈− ...
ϖ-dense open subsets in

δ-homogeneous neutrosophic λ̇−π̈− ...
ϖ- complete F̂-modular space (Ξ, λ̇, π̈, ∗P,3P).

Then
⋂∞

n=1 Un is λ̇− π̈ − ...
ϖ-dense in Ξ.

Proof. Consider the λ̇ − π̈ − ...
ϖ-ball B(é, r, τ̆) and let ỳ ∈ B(é, r, τ̆). Then

λ̇(é− ỳ, 2τ̆) > 1− r and π̈(é− ỳ, 2τ̆) < r.

Since λ̇(é− ỳ, .) and π̈(é− ỳ, .) are continuous, there exists ξỳ > 0 such that

λ̇
(
é− ỳ, τ̆−ε

2δ−1

)
> 1 − r and π̈

(
é− ỳ, τ̆−ε

2δ−1

)
< r for some ε > 0 with τ̆−ε

2δ−1 > 0 and
ε

2δ−1 ∈ (0, ξỳ).

We claim that B
(
ỳ, r′ , ε

4δ

)
⊆ B(é, r, 2t).

Choose r
′ ∈ (0, 1) and z̀ ∈ B

(
ỳ, r′ , ε

4δ

)
, then there exists a sequence {z̀n} in

B
(
ỳ, r′ , ε

4δ

)
which is λ̇− π̈ − ...

ϖ-converges to z̀, so we have

λ̇
(
z̀− ỳ,

ε

2δ−1

)
⩾ λ̇

(
2(z̀− z̀n),

ε

2δ

)
∗Mλ̇

(
2(z̀n − ỳ),

ε

2δ

)
= λ̇

(
z − z̀n,

ε

4δ

)
∗Mλ̇

(
z̀n − ỳ,

ε

4δ

)
> 1− r,

π̈
(
z̀− ỳ,

ε

2δ−1

)
⩽ π̈

(
2(z̀− z̀n),

ε

2δ

)
3Pπ̈

(
2(z̀n − ỳ),

ε

2δ

)
= π̈

(
z̀− z̀n,

ε

4δ

)
3Pπ̈

(
z̀n − ỳ,

ε

4δ

)
< r, and

...
ϖ
(
z̀− ỳ,

ε

2δ−1

)
⩽

...
ϖ
(
2(z̀− z̀n),

ε

2δ

)
⊙P

...
ϖ
(
2(z̀n − ỳ),

ε

2δ

)
=

...
ϖ
(
z̀− z̀n,

ε

4δ

)
⊙P

...
ϖ
(
z̀n − ỳ,

ε

4δ

)
< r

Therefore we have

λ̇(é− z̀, 2τ̆) = λ̇(2(z̀− ỳ), 2ε) ∗Mλ̇(2(é− ỳ), 2(τ̆ − ε))

= λ̇
(
z̀− ỳ,

ε

2δ−1

)
∗Mλ̇

(
é− ỳ,

τ̆ − ε

2δ−1

)
⩾ (1− r) ∗P (1− r) = 1− r,
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π̈(é− z̀, 2τ̆) = λ̇(2(z̀− ỳ), 2ε)3Pπ̈(2(é− ỳ), 2(τ̆ − ε))

= π̈
(
z̀− ỳ,

ε

2δ−1

)
3Pπ̈

(
é− ỳ,

τ̆ − ε

2δ−1

)
⩽ r3Pr = r, and

...
ϖ(é− z̀, 2τ̆) = λ̇(2(z̀− ỳ), 2ε)⊙P

...
ϖ(2(é− ỳ), 2(τ̆ − ε))

=
...
ϖ
(
z̀− ỳ,

ε

2δ−1

)
⊙P

...
ϖ

(
é− ỳ,

τ̆ − ε

2δ−1

)
⩽ r⊙P r = r.

So the claim is true and hence if V is a nonempty λ̇ − π̈ − ...
ϖ-open set of Ξ, then

V
⋂

U1 is nonempty and λ̇− π̈ − ...
ϖ-open.

Suppose é1 ∈ V
⋂
U1, so there exist r1 ∈ (0, 1) and τ̆1 > 0 such that

B
(
é1, r1,

τ̆1
2δ−1

)
⊆ V

⋂
U1.

Choose r
′

1 < r1 and τ̆
′

1 = min{τ̆1, 1} such that B

(
é1, r

′
,

τ̆
′
1

2δ−1

)
⊆ V

⋂
U1.

Since U2 is λ̇− π̈ − ...
ϖ-dense in Ξ, we have B

(
é1, r

′

1,
τ̆
′
1

2δ−1

)⋂
U2 ̸= ∅.

Let é2 ∈ B

(
é1, r

′

1,
τ̆
′
1

2δ−1

)⋂
U2, hence there exist r2 ∈

(
0, 1

2

)
and τ̆2 > 0 such that

B
(
é2, r2,

τ̆2
2δ−1

)
⊆ B

(
é1, r

′

1,
τ̆
′
1

2δ−1

)⋂
U2.

Choose r
′

2 < r2 and τ̆
′

2 = min
{
τ̆2,

1
2

}
such that B

(
é2, r

′
2,

tτ̆
′
2

2δ−1

)
⊆ V

⋂
U2.

By induction, we can obtain a sequence {én} in Ξ and two sequences {r′n}, {τ̆
′

n}
such that 0 < r

′

n < 1
n , 0 < τ̆

′

n < 1
n and B

(
én, r

′
n,

τ̆ ′
n

2δ−1

)
⊆ V

⋂
Un.

We show that {én} is λ̇− π̈ − ...
ϖ-Cauchy.

Get τ̆ > 0 and r ∈ (0, 1), then we can choose k ∈ N such that 2τ̆
′

k < τ̆ and r
′

k < r.

Since ém, én ∈ B

(
ék, r

′

k,
τ̆
′
k

2δ−1

)
, for m,n ⩾ k, we get

λ̇(ém − én, 2τ̆) ⩾ λ̇(ém − én, 4τ̆
′

k)

⩾ λ̇
(
2(ém − ék), 2τ̆

′

k

)
∗Mλ̇(2(ék − én), 2τ̆

′

k)

= λ̇

(
ém − ék,

τ̆
′

k

2δ−1

)
∗Mλ̇

(
ék − én,

τ̆
′

k

2δ−1

)
⩾ (1− rk) ∗P (1− rk) > 1− r,
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π̈(ém − én, 2τ̆) ⩽ π̈(ém − én, 4τ̆
′

k)

⩽ π̈
(
2(ém − ék), 2τ̆

′

k

)
3Mπ̈(2(ék − én), 2τ̆

′

k)

= π̈

(
ém − ék,

τ̆
′

k

2δ−1

)
3Mπ̈

(
ék − én,

τ̆
′

k

2δ−1

)
⩽ rk)3Prk) < r, and

...
ϖ(ém − én, 2τ̆) ⩽

...
ϖ(ém − én, 4τ̆

′

k)

⩽
...
ϖ
(
2(ém − ék), 2τ̆

′

k

)
⊙M

...
ϖ(2(ék − én), 2τ̆

′

k)

=
...
ϖ

(
ém − ék,

τ̆
′

k

2δ−1

)
⊙M

...
ϖ

(
ék − én,

τ̆
′

k

2δ−1

)
⩽ rk)⊙P rk) < r.

Therefore {én} is a λ̇ − π̈ − ...
ϖ-Cauchy sequence. Since Ξ is λ̇ − π̈ − ...

ϖ-complete,

there exists é ∈ Ξ such that én → é. For all n ⩾ k, én ∈ B

(
ék, r

′

k,
τ̆
′
k

2δ−1

)
and hence

é ∈ B
(
ék, r

′
k,

τ̆
′
k

2δ−1

)
⊆ V

⋂
Uk. This implies that V

⋂
(
⋂∞

n=1 Un) ̸= ∅.
Therefore

⋂∞
n=1 Un is λ̇− π̈ − ...

ϖ-dense in Ξ.

Finally, we give the uniform limit theorem in δ-homogeneous NF̂M. Let Ξ be a
nonempty set and let (Y, λ̇, π̈,

...
ϖ, ∗,3,⊙) be an NF̂M. A sequence {fn} of mappings

from Ξ to Y is called λ̇ − π̈ − ...
ϖ-converges uniformly to a mapping f : Ξ → Y if,

for τ̆ > 0 and r ∈ (0, 1), there exists n0 ∈ N such that

λ̇(fn(é)− f(é), τ̆) > 1− r, π̈(fn(é)− f(é), τ̆) < r and
...
ϖ(fn(é)− f(é), τ̆) < r

for all n ⩾ n0 and é ∈ Ξ. □

Theorem 3.8. Let {fn} be a sequence of continuous mappings from a topo-

logical space Ξ to a δ-homogeneous NF̂M (Y, λ̇, π̈,
...
ϖ, ∗,3,⊙). If {fn}λ̇ − π̈ − ...

ϖ-
convergent uniformly to f : Ξ → Y, then f is continuous.

Proof. Let V be a λ̇ − π̈ − ...
ϖ-open set of Y and é0 ∈ f−1(V ), so there exist

t > 0 and r ∈ (0, 1) such that B(f(é0), r, τ̆) ⊂ V .
For r ∈ (0, 1), we can choose ς̆ ∈ (0, 1) such that ∗(1− ς̆) ∗ (1− ς̆) > 1− r.

Since {fn}λ̇− π̈− ...
ϖ- converges uniformly to f, for ς̆ ∈ (0, 1) and τ̆ > 0 there exists

n0 ∈ N such that λ̇
(
fn(é)− f(é), τ̆

4δ+1

)
> 1− ς̆ and π̈

(
fn(é)− f(é), τ̆

4δ+1

)
< ς̆ for all

n ⩾ n0 and é ∈ Ξ.
Furthermore, each fn is continuous. Then there exists a neighborhood U of é0 such
that fn(U) ⊂ B

(
fn(é0), ς̆ ,

τ̆
4δ+1

)
.

Therefore λ̇
(
fn(é)− f(é0),

τ̆
4δ+1

)
> 1− ς̆ and π̈

(
fn(é)− f(é0),

τ̆
4δ+1

)
< ς̆ for all n ⩾ n0

and é ∈ U and so we have
λ̇(f(é)− fn(é0), τ̆) ⩾ λ̇

(
2(f(é)− fn(é)),

τ̆
2

)
∗ λ̇
(
2(fn(é)− f(é0)),

τ̆
2

)
= λ̇

(
f(é)− fn(é),

τ̆
2δ+1

)
∗ λ̇
(
2(fn(é)− f(é0)),

τ̆
2δ+1

)
⩾ λ̇

(
f(é)− fn(é),

τ̆
2δ+1

)
∗ λ̇
(
2(fn(é)− fn(é0)),

τ̆
2δ+2

)
∗ λ̇
(
2(fn(é0)− f(é0)),

τ̆
2δ+2

)
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= λ̇
(
f(é)− fn(é),

τ̆
2δ+1

)
∗ λ̇
(
fn(é)− fn(é0),

τ̆
4δ+1

)
∗ λ̇
(
fn(é0)− f(é0),

τ̆
4δ+1

)
⩾ (1− ς̆) ∗ (1− ς̆) ∗ (1− ς̆) > 1− r,

π̈(f(é)− fn(é0), τ̆) ⩽ π̈
(
2(f(é)− fn(é)),

τ̆
2

)
3π̈
(
2(fn(é)− f(é0)),

τ̆
2

)
= π̈

(
f(é)− fn(é),

τ̆
2δ+1

)
3π̈
(
2(fn(é)− f(é0)),

τ̆
2δ+1

)
⩽ π̈

(
f(é)− fn(é),

τ̆
2δ+1

)
3π̈
(
2(fn(é)− fn(é0)),

τ̆
2δ+2

)
3π̈
(
2(fn(é0)− f(é0)),

τ̆
2δ+2

)
= π̈

(
f(é)− fn(é),

τ̆
2δ+1

)
3π̈
(
fn(é)− fn(é0),

τ̆
4δ+1

)
3π̈
(
fn(é0)− f(é0),

τ̆
4δ+1

)
⩽ (1− ς̆)3(1− ς̆)3(1− ς̆) > 1− r and

...
ϖ(f(é)− fn(é0), τ̆) ⩽

...
ϖ
(
2(f(é)− fn(é)),

τ̆
2

)
⊙ ...

ϖ
(
2(fn(é)− f(é0)),

τ̆
2

)
=

...
ϖ
(
f(é)− fn(é),

τ̆
2δ+1

)
⊙ ...

ϖ
(
2(fn(é)− f(é0)),

τ̆
2δ+1

)
⩽

...
ϖ
(
f(é)− fn(é),

τ̆
2δ+1

)
⊙ ...

ϖ
(
2(fn(é)− fn(é0)),

τ̆
2δ+2

)
⊙ ...

ϖ
(
2(fn(é0)− f(é0)),

τ̆
2δ+2

)
=

...
ϖ
(
f(é)− fn(é),

τ̆
2δ+1

)
⊙ ...

ϖ
(
fn(é)− fn(é0),

τ̆
4δ+1

)
⊙ ...

ϖ
(
fn(é0)− f(é0),

τ̆
4δ+1

)
⩽ (1− ς̆)⊙ (1− ς̆)⊙ (1− ς̆) > 1− r
This implies that f(é) ∈ B(f(é0), r, τ̆) ⊂ V , therefore f(U) ⊆ V , hence f is continu-
ous. □
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