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Melike Aysel Bayrak, Salih Can Sarikaya, and Dondu Oz

Abstract. In this study, some criteria for the existence of multiple solutions

of the iterative system of the second order nonlinear impulsive boundary value
problem are presented with the help of the fixed point theorem on the cone.

Then, the applicability of the results is emphasised with an example.

1. Introduction

Impulsive differential equations, unlike classical differential equations, are used
to model systems that exhibit abrupt changes at certain points in time. These
equations have important applications in fields as diverse as engineering, biology,
economics and physics. In the references [1,2,10,16,17], a few specific examples
of the application areas of impulsive differential equations can be as follows:

• It is used for modelling sudden changes in control systems. For example,
these equations are used when a robot arm must suddenly stop or change
direction.

• It is used for modelling sudden market movements or economic shocks.
For example, it can be used to model the effects of sudden interest rate
changes or financial crises.
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• It is used to model sudden increases or decreases of populations, especially
situations such as migration, epidemics or sudden environmental changes.

• It is used for modelling drug administration. For example, it can be used
to model the effects of drug doses given to a patient at certain intervals.

• In electrical circuits, it is used for modelling sudden voltage or current
changes. In particular, impulsive equations are used in switching circuits.

Many authors have worked on the existence of solutions of impulsive boundary
value problems. In fact, in most studies, especially the existence of positive solu-
tions has been investigated. The existence of positive solutions is a critical issue
in many mathematical and applied fields. For impulsive BVPs, positive solutions
indicate that the system is stable and sustainable under certain conditions. Positive
solutions refer to the transition of a system from a given initial state to a positive
state or a sustainable positive state. in this context, [4, 5, 7, 13] studies can be
cited.

Moreover, some authors have considered the system form of impulsive differ-
ential equations, especially discrete systems. In this paper, the boundary value
problem is considered as an iterative system, unlike the discrete system. It is clear
that the iterative system is much more complicated than the discrete system. In
iterative systems, starting from a starting point, a solution or sequence is generated
through repeated steps. At each step, the next step is calculated using the results
obtained from the previous step. [3,6,8,9,11,12,14] studies can also be given as
examples of iterative systems and systems.

In this work, we consider the following iterative system of nonlinear second-
order impulsive boundary value problem (IBVP), inspired by the aforementioned
result: 

κ′′i (t) + ηiqi(t)pi(κi+1(t)) = 0, 1 ⩽ i ⩽ n, t ∈ J = [0, 1]

κn+1(t) = κ1(t),

△κi|t=tj = ηiĪij(κi+1(tj)), t ̸= tj , j = 1, 2, ..., k,

△κ′i|t=tj = −ηiĨij(κi+1(tj)),

α1κi(0)− α2κ
′
i(0) = 0,

α3κi(1) + α4κ
′
i(1) = 0

(1.1)

where t ̸= tj , j = 1, 2, ..., k such that 0 < t1 < t2 < ... < tk < 1. Furthermore, for
i = 1, 2, ..., n, the functions △κi and △κ′i at the point t = tj stand for the jump of
κi(t) and κ

′
i(t) at the point t = tj , i.e.,

△κi|t=tj = κi(t
+
j )− κi(t

−
j ), △κ′i|t=tj = κ′i(t

+
j )− κ′i(t

−
j ),

where the values κi(t
+
j ), κ

′
i(t

+
j ) state the right-hand limit of κi(t) and κ

′
i(t) at the

point t = tj , j = 1, 2, ..., k and similarly κi(t
−
j ), κ

′
i(t

−
j ) state left-hand limit of κi(t)

and κ′i(t) at the point t = tj , j = 1, 2, ..., k.
Throughout this article we assume that the following conditions are met.

(C1) Let ηi be a positive number for all i = 1, 2, . . . , n. Given that α1, α2, α3, α4

∈ [0,∞), we have α1α3 + α1α4 + α2α3 > 0,
(C2) For 1 ⩽ i ⩽ n, the function pi : R+ → R+ is continuous,
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(C3) For 1 ⩽ i ⩽ n, the function qi ∈ C([0, 1],R+) does not vanish identically
on any closed subinterval of [0, 1],

(C4) Let Īij ∈ C(R,R+) and Ĩij ∈ C(R,R+) be bounded functions. For any
nonnegative number λ and for t < tj where j = 1, 2, . . . , k and 1 ⩽ i ⩽ n,

the inequality [α4 + α3(1− tj)]Ĩij(λ) > α3Īij(λ) holds.

The primary tool used in this study is the fixed point theorem with reference
to [15], aiming to identify certain conditions for the existence of multiple positive
solutions in the iterative system of nonlinear second-order IBVP (1.1). To the
best of the authors’ knowledge, the existence of multiple positive solutions for this
iterative system has not been previously investigated. By establishing some criteria
for the existence of these solutions, we contribute to the existing literature.

The structure of this paper is as follows: In Section 2, we introduce several
definitions and fundamental lemmas essential for understanding our main results.
Section 3 provides criteria for the existence of multiple positive solutions for the
iterative system of IBVP (1.1). Finally, in Section 4, we illustrate the application
of our main results with an example.

2. Preliminaries

In this section, we start by introducing fundamental definitions in Banach
spaces, followed by several supplementary lemmas that will be utilized later.

Define J ′ = J\{t1, t2, ..., tk}. The space C(J) denotes the Banach space of all
continuous mappings κ : J → R equipped with the norm ∥κ∥ = sup

t∈J
|κ(t)|. The

space PC(J) consists of functions κ : J → R such that κ ∈ C(J ′), κ(t+j ) and κ(t
−
j )

exist, and κ(t−j ) = κ(tj) for j = 1, 2, ..., k. PC(J) is also a Banach space with the

norm ∥κ∥PC = sup
t∈J

|κ(t)|. Let B = PC(J)∩C2(J ′). A function (κ1, ..., κn) ∈ Bn is

considered a solution of the second-order IBVP (1.1)’s iterative system if it satisfies
the conditions of the second-order IBVP (1.1)’s iterative system.

Initially, we will address the case where i = 1 in the second-order IBVP (1.1).
Consequently, we will present the solution κ1 for the second-order IBVP (2.1).
Subsequently, having determined κ1, we proceed to find κn. Continuing in this
manner, we can sequentially determine κn−1, κn−2, and so forth, eventually reach-
ing κ2. Thus, we obtain the solution (κ1, ..., κn) for the second-order IBVP (1.1)’s
iterative system.

Assume that g ∈ C[0, 1], then we deal with the following second-order IBVP:

κ′′1(t) + g(t) = 0, t ∈ J = [0, 1], t ̸= tj , j = 1, 2, ..., k,

△κ1|t=tj = η1Ī1j(κ2(tj)),

△κ′1|t=tj = −η1Ĩ1j(κ2(tj)),
α1κ1(0)− α2κ

′
1(0) = 0,

α3κ1(1) + α4κ
′
1(1) = 0.

(2.1)



30 BAYRAK, SARIKAYA, AND OZ

The solutions of the corresponding homogeneous equation are defined by ζ and ζ̄.
Under the initial conditions{

ζ(0) = α2, ζ ′(0) = α1,

ζ̄(1) = α4, ζ̄ ′(1) = −α3,
(2.2)

we have

κ′′1(t) = 0, t ∈ [0, 1].(2.3)

Using the initial conditions (2.2), we can deduce from equation (2.3) for ζ and ζ̄
the following equations:

ζ(t) = α2 + α1t, ζ̄(t) = α4 + α3(1− t).(2.4)

Set

µ := α1α4 + α1α3 + α2α3.(2.5)

Lemma 2.1. Let (C1)-(C4) hold. If κ1 ∈ B is a solution of the equation

κ1(t) =

∫ 1

0

H(t, s)g(s)ds+

k∑
j=1

W1j(t, tj),(2.6)

where

H(t, s) =
1

µ

{
(α2 + α1s)[α4 + α3(1− t)], s ⩽ t,

(α2 + α1t)[α4 + α3(1− s)], t ⩽ s,
(2.7)

(2.8)
W1j(t, tj) =

1

µ

{
(α2 + α1t)[−α3η1Ī1j(κ2(tj)) + (α4 + α3(1− tj))η1Ĩ1j(κ2(tj))], t < tj ,

(α4 + α3(1− t))[α1η1Ī1j(κ2(tj)) + (α2 + α1tj)η1Ĩ1j(κ2(tj))], tj ⩽ t,

then κ1 is a solution of the IBVP (2.1).

Proof. Let κ1 satisfies the equation (2.6), then we get

κ1(t) =

∫ 1

0

H(t, s)g(s)ds+

k∑
j=1

W1j(t, tj),

i.e.,

κ1(t) =
1

µ

∫ t

0

(α2+α1s)[α4+α3(1−t)]g(s)ds+
1

µ

∫ 1

t

(α2+α1t)[α4+α3(1−s)]g(s)ds

+
1

µ

∑
0<tj<t

(α4 + α3(1− t))[α1η1Ī1j(κ2(tj)) + (α2 + α1tj)η1Ĩ1j(κ2(tj))]

+
1

µ

∑
t<tj<1

(α2 + α1t)[−α3η1Ī1j(κ2(tj)) + (α4 + α3(1− tj))η1Ĩ1j(κ2(tj))],
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κ′1(t) =
1

µ

∫ t

0

(−α3)(α2 + α1s)g(s)ds+
1

µ

∫ 1

t

α1[α4 + α3(1− s)]g(s)ds

+
1

µ

∑
0<tj<t

(−α3)[α1η1Ī1j(κ2(tj)) + (α2 + α1tj)η1Ĩ1j(κ2(tj))]

+
1

µ

∑
t<tj<1

α1[−α3η1Ī1j(κ2(tj)) + (α4 + α3(1− tj))η1Ĩ1j(κ2(tj))].

Thus

κ′′1(t) =
1

µ
(−α3t− (α4 + α3(1− t)))g(t)

= −g(t),

i.e.,

κ′′1(t) + g(t) = 0.

Since

κ1(0) =
1

µ

∫ 1

0

α2[α4 + α3(1− s)]g(s)ds

+
1

µ

k∑
j=1

α2[−α3η1Ī1j(κ2(tj)) + (α4 + α3(1− tj))η1Ĩ1j(κ2(tj))]

and

κ′1(0) =
1

µ

∫ 1

0

α1[α4 + α3(1− s)]g(s)ds

+
1

µ

k∑
j=1

α1[−α3η1Ī1j(κ2(tj)) + (α4 + α3(1− tj))η1Ĩ1j(κ2(tj))],

we get

α1κ1(0)− α2κ
′
1(0) = 0.(2.9)

Since

κ1(1) =
1

µ

∫ 1

0

(α2 + α1s)(α3 + α4)g(s)ds

+
1

µ

k∑
j=1

(α3 + α4)[α1η1Ī1j(κ2(tj)) + (α2 + α1tj)η1Ĩ1j(κ2(tj))]
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and

κ′1(1) =
1

µ

∫ 1

0

(−α3)(α2 + α1s)g(s)ds

+
1

µ

k∑
j=1

(−α3)[α1η1Ī1j(κ2(tj)) + (α2 + α1tj)η1Ĩ1j(κ2(tj))],

we get

α3κ1(1) + α4κ
′

1(1) = 0.(2.10)

The conditions of the IBVP (2.1) are satisfied as indicated by equations (2.9) and
(2.10). □

Lemma 2.2. Suppose that the conditions (C1)-(C4) are satisfied. For κ1(t) ∈ B
with g(t) ⩾ 0, the solution κ1(t) of the second-order IBVP (2.1) fulfills κ1(t) ⩾ 0
for t ∈ J.

Proof. First, note that the Green function H(t, s) is non-negative for t, s ∈
J × J . Furthermore, given that Ī1j(κ1(tj)) and Ĩ1j(κ1(tj)) are non-negative, it
follows that W1j(t, tj) is also non-negative. Consequently, κ1(t) is positive for
t ∈ [0, 1]. □

Lemma 2.3. Assuming that (C1)-(C4) hold, the solution κ1(t) ∈ B of the
second-order IBVP (2.1) satisfies κ′1(t) ⩾ 0 for t ∈ J .

Proof. Suppose the inequality κ′1(t) < 0 is satisfied. Given that κ1(t) is
monotonically decreasing on J , it can be ascertained that κ1(1) is strictly less than
κ1(0).
From the boundary conditions of the IBVP (2.1), we have

κ1(1) <
α2

α1
κ′1(0).

This implies that

κ1(1) <
α2

α1
κ′1(0) < 0.

The last inequality contradicts the Lemma 2.2. That is, our assumption is wrong.
Thus, κ′1(t) ⩾ 0 for t ∈ J .

□

Lemma 2.4. Assume that (C1)-(C4) hold, then for any t, s ∈ J, we conclude
the following inequality

H(s, s) ⩾ H(t, s) ⩾ 0.(2.11)

Proof. From equation (2.7), it is easily obtained. □
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Lemma 2.5. Assuming that (C1)-(C4) hold, then for any t, s ∈ J, and

τ ∈
(
0,

1

2

)
, we obtain the following inequality

H(s, s) ⩽
1

γ
H(t, s)(2.12)

where γ := min

{
α2 + α1τ

α2 + α1
,
α4 + α3τ

α4 + α3

}
.

Proof. From the definition ofH(t, s), we can conclude that for any t belonging
to the interval [τ, 1− τ ], we obtain

H(t, s)

H(s, s)
=


α2 + α1t

α2 + α1s
, t ⩽ s,

α4 + α3(1− t)

α4 + α3(1− s)
, s ⩽ t

⩾


α2 + α1τ

α2 + α1
, t ⩽ s,

α4 + α3τ

α4 + α3
, s ⩽ t

⩾ min

{
α2 + α1τ

α2 + α1
,
α4 + α3τ

α4 + α3

}

:= γ.

□

Consider the set K defined as K = {κ1(t) ∈ B : κ1(t) is nonnegative, nonde-
creasing, and concave on J}. It follows that K constitutes a cone within PC(J).

Lemma 2.6. Assume that the conditions (C1)-(C4) are satisfied. Then, for

κ1(t) ∈ K and τ ∈
(
0,

1

2

)
, we conclude the following inequality

∥κ1∥PC ⩽
1

τ
min

t∈[τ,1−τ ]
κ1(t).(2.13)

Proof. Given that κ1(t) ∈ K, it can be deduced that κ1(t) is concave on J .
Consequently, we can assert that the minimum value of κ1(t) for t in the interval
[τ, 1 − τ ] is achieved at κ1(τ), and the norm ∥κ1∥PC is equal to the supremum of
|κ1(t)| on J , which is attained at κ1(1). Since the graph of κ1 exhibits a concave
downward shape on J , we obtain

κ1(τ)− κ1(0)

τ − 0
⩾
κ1(1)− κ1(0)

1− 0
,
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In other words, we have τκ1(1) + (1− τ)κ1(0) ⩽ κ1(τ). Consequently, we can

deduce that τκ1(1) ⩽ κ1(τ), that is, κ1(1) ⩽
1

τ
κ1(τ). This concludes the proof. □

We note that

κ1(t) =η1

∫ 1

0

H(t, s1)q1(s1)p1

(
η2

∫ 1

0

H(s1, s2)q2(s2)p2

(
η3

∫ 1

0

H(s2, s3)q3(s3)p3...

pn−1

(
ηn

∫ 1

0

H(sn−1, sn)qn(sn)pn(κ1(sn))dsn +

k∑
j=1

Wnj(sn−1, tj)

)
dsn−1

+

k∑
j=1

Wn−1,j(sn−2, tj)

)
dsn−2 + ...+

k∑
j=1

W3j(s2, tj)

)
ds2

+

k∑
j=1

W2j(s1, tj)

)
ds1 +

k∑
j=1

W1j(t, tj),

κi(t) =ηi

∫ 1

0

H(t, s)qi(s)pi(κi+1(s))ds+

k∑
j=1

Wij(t, tj), t ∈ J,

κn+1(t) = κ1(t)

and

Wij(t, tj) =
1

µ

{
(α2 + α1t)[−α3ηiĪij(κi+1(tj)) + (α4 + α3(1− tj))ηiĨij(κi+1(tj))], t < tj ,

(α4 + α3(1− t))[α1ηiĪij(κi+1(tj)) + (α2 + α1tj)ηiĨij(κi+1(tj))], tj ⩽ t,

if and only if the n-tuple (κ1(t), κ2(t), ..., κn(t)) is a solution of the iterative system
of the IBVP (1.1).

3. Main results

The fixed point theorem presented below is fundamental and plays a crucial
role in proving our main result.

Definition 3.1. Let B be a Banach space. For a nonnegative continuous
function γ defined on a cone K ⊂ B, we define the set K(γ, c) = {x ∈ K : γ(x) < c}
for each c > 0.

To determine some conditions on the existence of at least three positive solu-
tions for the iterative system of the IBVP (1.1), we will apply the following fixed
point theorem [15].

Lemma 3.1. [15] Let K be a cone in a real Banach space B. Suppose ψ, θ, and
φ are three increasing, nonnegative, and continuous functionals on K, satisfying
the conditions for some v > 0 and M̃ > 0 such that:

ψ(x) ⩽ θ(x) ⩽ φ(x), ∥x∥ ⩽ M̃ψ(x)
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for all x in K(ψ, ℓ3).

Assume there exists a completely continuous operator T : K(ψ, ℓ3) → K and
0 < ℓ1 < ℓ2 < ℓ3 such that:

(i) ψ(Tx) < ℓ3 for all x ∈ ∂P (ψ, ℓ3);
(ii) θ(Tx) > ℓ2 for all x ∈ ∂P (θ, ℓ2);
(iii) P (φ, ℓ1) ̸= ∅, and φ(Tx) < ℓ1 for all x ∈ ∂P (φ, ℓ1).

Then, the operator T has at least three fixed points, x1, x2, and x3 in K(ψ, ℓ3) such
that:

0 ⩽ φ(x1) < ℓ1 < φ(x2), θ(x2) < ℓ2 < θ(x3), ψ(x3) < ℓ3.

Now, we define the following operator B → B, for κ1 ∈ B, by

Tκ1(t) = η1

∫ 1

0

H(t, s1)q1(s1)p1

(
η2

∫ 1

0

H(s1, s2)q2(s2)p2

(
η3

∫ 1

0

H(s2, s3)q3(s3)p3...

pn−1

(
ηn

∫ 1

0

H(sn−1, sn)qn(sn)pn(κ1(sn))dsn+

k∑
j=1

Wnj(sn−1, tj)

)
dsn−1

+

k∑
j=1

Wn−1,j(sn−2, tj)

)
dsn−2 + ...+

k∑
j=1

W3j(s2, tj)

)
ds2

+

k∑
j=1

W2j(s1, tj)

)
ds1 +

k∑
j=1

W1j(t, tj).

(3.1)

Given (C1)-(C4), along with Lemmas 2.2, 2.3, and the definition of T , it is
evident that for κ1(t) ∈ K, Tκ1(t) ⩾ 0, (Tκ1)

′(t) ⩾ 0 and Tκ1(t) is concave on J.
Consequently, T (K) ⊂ K. Additionally, the Arzela-Ascoli Theorem demonstrates
that the operator T is completely continuous. We now focus on investigating the
relevant fixed points of T that are located within the cone K.

We investigate the presence of at least three positive solutions for the impulsive
boundary value problem (1.1) using the fixed point theorem discussed in [15].

Let τ ∈
(
0, 12

)
and define the increasing, nonnegative continuous functionals

ψ, θ and φ on K by

ψ(κ) = max
t∈[0,τ ]

κ(t) = κ(τ),

θ(κ) = min
t∈[τ,1−τ ]

κ(t) = κ(τ),

φ(κ) = max
t∈[0,1]

κ(t) = κ(1).

For each κ ∈ K, it is clear that

ψ(κ) = θ(κ) ⩽ φ(κ).

Additionally, with the help of the Lemma 2.6, for each κ ∈ K,

∥κ∥PC ⩽
1

τ
κ(τ) =

1

τ
ψ(κ).
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The notations that follow are provided for the convenience.
Suppose

Ωi = ηiγ

∫ 1−τ

τ

H(s, s)qi(s)ds,

Λi = ηi

[ ∫ 1

0

H(s, s)qi(s)ds+
k

µ
(2α1 + α2)(α3 + α4)

]
.

Theorem 3.1. Assume that conditions (C1)-(C4) are satisfied. Let there exist
positive numbers ℓ1 < ℓ2 < ℓ3 such that

ℓ1 <
ℓ1
τ
< ℓ2 <

Λi

Ωi
ℓ2 < ℓ3

for i = 1, 2, ..., n and τ ∈
(
0, 12

)
. And for i = 1, 2, ..., n and j = 1, 2, ..., k, assume

that the functions pi, Īij and Ĩij satisfies the following conditions:

(a) pi(t, κi+1(t)) <
ℓ3
Λi
, Īij(κi+1(tj)) <

ℓ3
Λi
, Ĩij(κi+1(tj)) <

ℓ3
Λi

for all (t, κi+1) ∈ [0, 1]×
[
0,
ℓ3
τ

]
,

(b) pi(t, κi+1(t)) >
ℓ2
Ωi
, for all (t, κi+1) ∈ [τ, 1− τ ]×

[
ℓ2,

ℓ3
τ

]
,

(c) pi(t, κi+1(t)) <
ℓ1
Λi
, Īij(κi+1(tj)) <

ℓ1
Λi
, Ĩij(κi+1(tj)) <

ℓ1
Λi

for all (t, κi+1) ∈ [0, 1]×
[
0,
ℓ1
τ

]
.

Then, the operator T has at least three fixed points, κi, κ̄i and κ̃i ∈ K(ψ, ℓ3) such
that

0 ⩽ ψ(κi) < ℓ1 < ψ(κ̄i), θ(κ̄i) < ℓ2 < θ(κ̃i), φ(κ̃i) < ℓ3, for i = 1, 2, ..., n.

Proof. We identify the completely continuous operator T as in (3.1). Thus,

it is straightforward to verify that T : K(ψ, ℓ3) → K. Next, we demonstrate that
all the criteria of Lemma 3.1 are met. To verify condition (i) of Lemma 3.1, we
select κ1 ∈ K(ψ, ℓ3). Then ψ(κ1) = ℓ3, i.e., ψ(κ1) = max

t∈[0,τ ]
κ1(t) = κ1(τ) = ℓ3, this

means 0 ⩽ κ1(t) ⩽ ℓ3 for all t ∈ [0, τ ].

If we recall that ∥κ1∥ ⩽
1

τ
ψ(κ1) =

1

τ
ℓ3 =

ℓ3
τ
. So, we get 0 ⩽ κ1 ⩽

ℓ3
τ

for all

t ∈ [0, 1].

Now, we can demonstrate that κ2(t) ∈
[
0,
ℓ3
τ

]
for t ∈ [0, 1]. For all (sn−1, κn) ∈

[0, 1] ×
[
0,
ℓ3
τ

]
, by using the assumption (a) in Theorem 3.1 and the Lemma 2.5,
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we obtain

ηn

∫ 1

0

H(sn−1, sn)qn(sn)pn(κ1(sn))dsn +

k∑
j=1

Wnj(sn−1, tj)

⩾ ηn

∫ 1

0

H(sn−1, sn)qn(sn)pn(κ1(sn))dsn

⩾ ηnγ

∫ 1−τ

τ

H(sn, sn)qn(sn)pn(κ1(sn))dsn

⩾ 0,

and by using the assumtion (a) in Theorem 3.1, we get

ηn

∫ 1

0

H(sn−1, sn)qn(sn)pn(κ1(sn))dsn +

k∑
j=1

Wnj(sn−1, tj)

⩽ ηn

∫ 1

0

H(sn, sn)qn(sn)pn(κ1(sn))dsn + ηn
k

µ
(2α1 + α2)(α3 + α4)

·max{Īnj(κ1(tj), Ĩnj(κ1(tj)}

⩽
ℓ3
Λn

ηn

[ ∫ 1

0

H(sn, sn)qn(sn)dsn +
k

µ
(2α1 + α2)(α3 + α4)

]
= ℓ3

⩽
ℓ3
τ
.

Then, we have κn(t) ∈
[
0,
ℓ3
τ

]
for all t ∈ [0, 1]. By continuing with this bootstrap-

ping argument, we can establish that κ2(t) ∈
[
0,
ℓ3
τ

]
for all t ∈ [0, 1].

For all (t, κ1) ∈ [0, 1] ×
[
0,
ℓ3
τ

]
, by using the assumption (a) in Theorem 3.1,

we obtain

ψ(Tκ1) = max
t∈[0,τ ]

Tκ1(t)

= (Tκ1)(τ)

= η1

∫ 1

0

H(τ, s)q1(s)p1(κ2(s))ds+

k∑
j=1

W1j(τ, tj)

⩽
ℓ3
Λ1
η1

[ ∫ 1

0

H(s, s)q1(s)ds+
k

µ
(2α1 + α2)(α3 + α4)

]
= ℓ3.

Secondly, we show that (ii) of th Lemma 3.1 is satisfied. For this, we take
κ1 ∈ ∂K(θ, ℓ2). Then, θ(κ1) = min

t∈[τ,1−τ ]
κ1(t) = κ1(τ) = ℓ2, this means κ1(t) ⩾ ℓ2
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for all t ∈ [τ, 1 − τ ]. Noticing that, ∥κ1∥ ⩽
1

τ
ψ(κ1) =

1

τ
θ(κ1) =

ℓ2
τ

⩽
ℓ3
τ

for all

t ∈ [0, 1]. That is, we get ℓ2 ⩽ κ1(t) ⩽
ℓ3
τ

for t ∈ [τ, 1− τ ].

Now, we can show that κ2(t) ∈
[
ℓ2,

ℓ3
τ

]
for t ∈ [τ, 1 − τ ]. For all (sn−1, κn) ∈

[τ, 1− τ ]×
[
ℓ2,

ℓ3
τ

]
, by using the assumption (b) in Theorem 3.1, we obtain

ηn

∫ 1

0

H(sn−1, sn)qn(sn)pn(κ1(sn))dsn +

k∑
j=1

Wnj(sn−1, tj)

⩾ ηn

∫ 1

0

H(sn−1, sn)qn(sn)pn(κ1(sn))dsn

⩾ ηnγ

∫ 1−τ

τ

H(sn, sn)qn(sn)pn(κ1(sn))dsn

⩾
ℓ2
Ωn

[
ηnδ

∫ 1−τ

τ

H(sn, sn)qn(sn)dsn

]
= ℓ2,

and by using the assumtion (a) in Theorem 3.1, we get

ηn

∫ 1

0

H(sn−1, sn)qn(sn)pn(κ1(sn))dsn +

k∑
j=1

Wnj(sn−1, tj)

⩽ ηn

∫ 1

0

H(sn, sn)qn(sn)pn(κ1(sn))dsn + ηn
k

µ
(2α1 + α2)(α3 + α4)

·max{Īnj(κ1(tj), Ĩnj(κ1(tj)}

⩽
ℓ3
Λn

ηn

[ ∫ 1

0

H(sn, sn)qn(sn)dsn +
k

µ
(2α1 + α2)(α3 + α4)

]
= ℓ3

⩽
ℓ3
τ
.

For all (t, κ1) ∈ [τ, 1 − τ ] ×
[
ℓ2,

ℓ3
τ

]
, by using the assumption (b) in Theorem

3.1, we obtain

θ(Tκ1) = min
t∈[τ,1−τ ]

Tκ1(t)

= (Tκ1)(τ)

= η1

∫ 1

0

H(τ, s)q1(s)p1(κ2(s))ds+

k∑
j=1

W1j(τ, tj)
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⩾ η1γ

∫ 1−τ

τ

H(s, s)q1(s)p1(κ2(s))ds

⩾
ℓ2
Ω1
η1

[
γ

∫ 1−τ

τ

H(s, s)q1(s)ds

]
= ℓ2.

Lastly, we show that the condition (iii) of the Lemma 3.1 is satisfied. We note

that κ1(t) =
ℓ1
3

for t ∈ J is a member of the set ∂K(φ, ℓ1). And so K(φ, ℓ1) ̸= ∅.
Now, let κ1 ∈ ∂K(φ, ℓ1). Then, φ(κ1) = max

t∈[0,1]
κ1(t) = κ1(1) = ℓ1. This implies

0 ⩽ κ1(t) ⩽ ℓ1, t ∈ [0, 1]. Noticing that ∥κ1∥ ⩽
1

τ
ψ(κ1) ⩽

1

τ
φ(κ1) =

ℓ1
τ
. We

get, 0 ⩽ κ1(t) ⩽
ℓ1
τ

for t ∈ [0, 1]. Now, we can demonstrate that κ2(t) ∈
[
0,
ℓ1
τ

]
for t ∈ [0, 1]. For all (sn−1, κn) ∈ [0, 1] ×

[
0,
ℓ1
τ

]
, by using the assumtion (b) in

Theorem 3.1, we conclude that

ηn

∫ 1

0

H(sn−1, sn)qn(sn)pn(κ1(sn))dsn +

k∑
j=1

Wnj(sn−1, tj)

⩾ ηn

∫ 1

0

H(sn−1, sn)qn(sn)pn(κ1(sn))dsn

⩾ ηnγ

∫ 1−τ

τ

H(sn, sn)qn(sn)pn(κ1(sn))dsn

⩾ 0,

and by using the assumtion (c) in Theorem 3.1, we get

ηn

∫ 1

0

H(sn−1, sn)qn(sn)pn(κ1(sn))dsn +

k∑
j=1

Wnj(sn−1, tj)

⩽ ηn

∫ 1

0

H(sn, sn)qn(sn)pn(κ1(sn))dsn + ηn
k

µ
(2α1 + α2)(α3 + α4)

·max{Īnj(κ1(tj), Ĩnj(κ1(tj)}

⩽
ℓ1
Λn

ηn

[ ∫ 1

0

H(sn, sn)qn(sn)dsn +
k

µ
(2α1 + α2)(α3 + α4)

]
= ℓ1

⩽
ℓ1
τ
.
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Then, we have κn(t) ∈
[
0,
ℓ1
τ

]
for all t ∈ [0, 1]. By continuing with this bootstrap-

ping argument, we can establish that κ2(t) ∈
[
0,
ℓ1
τ

]
for all t ∈ [0, 1].

For all (t, κ1) ∈ [0, 1] ×
[
0,
ℓ1
τ

]
, by using the assumption (c) in Theorem 3.1,

we obtain

φ(Tκ1) = max
t∈[0,1]

Tκ1(t)

= (Tκ1)(1)

= η1

∫ 1

0

H(1, s)q1(s)p1(κ2(s))ds+

k∑
j=1

W1j(1, tj)

⩽
ℓ1
Λ1
η1

[ ∫ 1

0

H(s, s)q1(s)ds+
k

µ
(2α1 + α2)(α3 + α4)

]
= ℓ1.

As a consequence, all conditions of Lemma 3.1 are satisfied. Hence, the operator T
has at least three fixed points κ1(t), κ̄1 and κ̃1 ∈ K(ψ, ℓ3). As a result, by setting
κn+1(t) = κ1(t), κ̄n+1(t) = κ̄1(t) and κ̃n+1(t) = κ̃1(t), we obtain the existence of
at least three positive solutions (κ1, κ2, ..., κn), (κ̄1, κ̄2, ..., κ̄n) and (κ̃1, κ̃2, ..., κ̃n)
for the IBVP (1.1) given iteratively by

κr(t) = ηr

∫ 1

0

H(t, s)qr(s)pr(κr+1(s))ds+

k∑
j=1

Wrj(t, tj), r = n, n− 1, ..., 1,

κ̄r(t) = ηr

∫ 1

0

H(t, s)qr(s)pr(κ̄r+1(s))ds+

k∑
j=1

Wrj(t, tj), r = n, n− 1, ..., 1

and

κ̃r(t) = ηr

∫ 1

0

H(t, s)qr(s)pr(κ̃r+1(s))ds+

k∑
j=1

Wrj(t, tj), r = n, n− 1, ..., 1

such that

0 ⩽ φ(κi) < ℓ1 < φ(κ̄i), θ(κ̄i) < ℓ2 < θ(κ̃i), ψ(κ̃i) < ℓ3

for i = 1, 2, ..., n. The proof of Theorem 3.1 is completed. □

4. An example

Example 4.1. In the iterative system of the IBVP (1.1), suppose that n =
3, k = 1, qi(t) = 1 = ηi for i = 1, 2, 3, α1 = 3, α2 = 2, α3 = 4, α4 = 1 and



SOME RESULTS ON THE EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS 41

t1 =
1

3
, i.e.,

κ′′i (t) + pi(κi+1(t)) = 0, t ∈ J = [0, 1], t ̸= 1
3 , i = 1, 2, 3,

κ4 = κ1(t),

△κi|t= 1
3
= Īi1

(
κi+1

(
1

3

))
,

△κ′i|t= 1
3
= −Ĩi1

(
κi+1

(
1

3

))
,

3κi(0)− 2κ′i(0) = 0,

4κi(1) + κ′i(1) = 0.

(4.1)

where

p1(κ2) =


0, 01, κ2 ∈ [0, 25],

128κ2 − 3199, 99, κ2 ∈ [25, 30],

640, 01, κ2 ∈ [30, 15× 105],

p2(κ3) =


0, 003, κ3 ∈ [0, 25],

130κ3 − 3249, 997, κ3 ∈ [25, 30],

650, 003, κ3 ∈ [30, 15× 105],

p3(κ1) =


0, 01, κ1 ∈ [0, 25],

127κ1 − 3174, 99, κ1 ∈ [25, 30],

635, 01, κ1 ∈ [30, 15× 105].

For κi ⩾ 0, (i = 1, 2, 3)

Ī11(κ2) =
κ2

10000
, Ī21(κ3) =

κ3
6000

, Ī31(κ1) =
κ1
8000

,

Ĩ11(κ2) =
κ2
5000

, Ĩ21(κ3) =
κ3
3000

, Ĩ31(κ1) =
κ1
4000

.

By simple calculation, we get µ = 23, θ(t) = 3 + 6t, ϕ(t) = 9− 6t and

H(t, s) =
1

23

{
(2 + 3s)(5− 4t), s ⩽ t,

(2 + 3t)(5− 4s), t ⩽ s.

Choosing the number τ =
2

5
. With the help of the calculations, we have γ =

min

{
2 + 3 2

5

2 + 3
,
1 + 4 2

5

1 + 4

}
= min

{
16

25
,
13

25

}
=

13

25
.

Also, we obtain Ωi =
6799

143750
≈ 0, 047297 and Λi =

42339

46
≈ 920, 413043 for

i = 1, 2, 3. Taking ℓ1 = 10, ℓ2 = 30 and ℓ3 = 6× 105, we get

ℓ1 = 10 <
ℓ1
τ

= 25 < ℓ2 = 30 <
Λi

Ωi
ℓ2 = 583803, 68436 < ℓ3 = 6× 105.
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It is clear that (C1)-(C4) has been satisfied. Next, we show that the all condi-
tions of the Theorem 3.1 are also satisfied.

Firstly, we show that the condition (a) of the Theorem 3.1 is satisfied for

i = 1, 2, 3. For (t, κi+1) ∈ [0, 1] ×
[
0, 15 × 105

]
, we get pi(κi+1(t)) ⩽ 650, 003 <

ℓ3
Λi

≈ 651, 88124, Īij(κi+1(t1)), Ĩij(κi+1(t1)) < 500 <
ℓ3
Λi

≈ 651, 88124.

Secondly, we show that the condition (b) of the Theorem 3.1 is satisfied for

i = 1, 2, 3. For (t, κi+1) ∈ [ 25 ,
3
5 ] ×

[
30, 15 × 105

]
, we get pi(κi+1(t)) ⩾ 635, 01 >

ℓ2
Ωi

≈ 634, 284453.

Lastly, we show that the condition (c) of the Theorem 3.1 is satisfied for i =

1, 2, 3. For (t, κi+1) ∈ [0, 1] ×
[
0, 25

]
, we get pi(κi+1(t)) ⩽ 0, 01 <

ℓ1
Λi

≈ 0, 010864,

Īij(κi+1(t1)), Ĩij(κi+1(t1)) < 0, 008333 <
ℓ1
Λi

≈ 0, 010864.

Then, all of Theorem 3.1’s criteria are satisfied. Hence, T has at least three fixed
points κ1(t), κ̄1(t) and κ̃1(t) ∈ K(ψ, 6× 105). As a result, by setting κ4(t) =
κ1(t), κ̄4(t) = κ̄1(t) and κ̃4(t) = κ̃1(t), we obtain the existence of at least three
positive solutions (κ1, κ2, κ3), (κ̄1, κ̄2, κ̄3) and (κ̃1, κ̃2, κ̃3) for the IBVP (4.1) given
iteratively by

κr(t) = ηr

∫ 1

0

H(t, s)qr(s)pr(κr+1(s))ds+

k∑
j=1

Wrj(t, tj), r = 3, 2, 1,

κ̄r(t) = ηr

∫ 1

0

H(t, s)qr(s)pr(κ̄r+1(s))ds+

k∑
j=1

Wrj(t, tj), r = 3, 2, 1

and

κ̃r(t) = ηr

∫ 1

0

H(t, s)qr(s)pr(κ̃r+1(s))ds+

k∑
j=1

Wrj(t, tj), r = 3, 2, 1

such that

0 ⩽ φ(κi) < 10 < φ(κ̄i), θ(κ̄i) < 30 < θ(κ̃i), ψ(κ̃i) < 6× 105

for i = 1, 2, 3.
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